The Power Rule

What is the derivative of $\frac{d}{d x} x^{r}$? We answered this question first for positive integer values of r, for all integers, and then for rational values of r :

$$
\frac{d}{d x} x^{r}=r x^{r-1}
$$

We'll now prove that this is true for any real number r. We can do this two ways:

1st method: base e

Since $x=e^{\ln x}$, we can say:

$$
\begin{aligned}
x^{r} & =\left(e^{\ln x}\right)^{r} \\
x^{r} & =e^{r \ln x}
\end{aligned}
$$

We take the derivative of both sides to get:

$$
\begin{aligned}
\frac{d}{d x} x^{r} & =\frac{d}{d x} e^{r \ln x}=e^{r \ln x} \frac{d}{d x}(r \ln x) \quad \text { (by the chain rule) } \\
& =e^{r \ln x}\left(\frac{r}{x}\right) \quad \text { (remember } r \text { is constant) } \\
& \left.=x^{r}\left(\frac{r}{x}\right) \quad \text { (because } x^{r}=e^{r \ln x}\right) \\
\frac{d}{d x} x^{r} & =r x^{r-1}
\end{aligned}
$$

2nd method: logarithmic differentiation

We define $f(x)=x^{r}$, and take the natural \log of both sides to get $\ln f=r \ln x$. The technique of logarithmic differentiation requires us to we plug our function into the formula:

$$
(\ln f)^{\prime}=\frac{f^{\prime}}{f}
$$

So we first compute:

$$
\begin{aligned}
\ln f & =\ln x^{r} \\
\ln f & =r \ln x
\end{aligned}
$$

And then take the derivative of both sides to get:

$$
(\ln f)^{\prime}=\frac{r}{x}
$$

Since $(\ln f)^{\prime}=\frac{f^{\prime}}{f}$, we have:

$$
f^{\prime}=f(\ln f)^{\prime} \quad=\quad x^{r}\left(\frac{r}{x}\right)=r x^{r-1}
$$

Look over the two methods again - the calculations are almost the same. This is typical. To use the second method we had to introduce a new symbol like u or f. In the first method we had to deal with exponents. It's worthwhile know both methods.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

