Derivatives of Hyperbolic Sine and Cosine

Hyperbolic sine (pronounced "sinsh"):

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

Hyperbolic cosine (pronounced "cosh"):

$$
\begin{gathered}
\cosh (x)=\frac{e^{x}+e^{-x}}{2} \\
\frac{d}{d x} \sinh (x)=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{2}\right)=\frac{e^{x}-\left(-e^{-x}\right)}{2}=\cosh (x)
\end{gathered}
$$

Likewise,

$$
\frac{d}{d x} \cosh (x)=\sinh (x)
$$

(Note that this is different from $\frac{d}{d x} \cos (x)$.)
Important identity:

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

Proof:
$\cosh ^{2}(x)-\sinh ^{2}(x)=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2}$
$\cosh ^{2}(x)-\sinh ^{2}(x)=\frac{1}{4}\left(e^{2 x}+2 e^{x} e^{-x}+e^{-2 x}\right)-\frac{1}{4}\left(e^{2 x}-2+e^{-2 x}\right)=\frac{1}{4}(2+2)=1$
Why are these functions called "hyperbolic"?
Let $u=\cosh (x)$ and $v=\sinh (x)$, then

$$
u^{2}-v^{2}=1
$$

which is the equation of a hyperbola.
Regular trig functions are "circular" functions. If $u=\cos (x)$ and $v=\sin (x)$, then

$$
u^{2}+v^{2}=1
$$

which is the equation of a circle.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

