Derivatives of Hyperbolic Sine and Cosine

Hyperbolic sine (pronounced "sinsh"):

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

Hyperbolic cosine (pronounced "cosh"):

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
$$\frac{d}{dx}\sinh(x) = \frac{d}{dx}\left(\frac{e^x - e^{-x}}{2}\right) = \frac{e^x - (-e^{-x})}{2} = \cosh(x)$$

Likewise,

$$\frac{d}{dx}\cosh(x) = \sinh(x)$$

(Note that this is different from $\frac{d}{dx}\cos(x)$.)

Important identity:

 $\cosh^2(x) - \sinh^2(x) = 1$

Proof:

$$\cosh^{2}(x) - \sinh^{2}(x) = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$
$$\cosh^{2}(x) - \sinh^{2}(x) = \frac{1}{4}\left(e^{2x} + 2e^{x}e^{-x} + e^{-2x}\right) - \frac{1}{4}\left(e^{2x} - 2 + e^{-2x}\right) = \frac{1}{4}(2+2) = 1$$

Why are these functions called "hyperbolic"? Let $u = \cosh(x)$ and $v = \sinh(x)$, then

$$u^2 - v^2 = 1$$

which is the equation of a hyperbola.

Regular trig functions are "circular" functions. If $u = \cos(x)$ and $v = \sin(x)$, then

$$u^2 + v^2 = 1$$

which is the equation of a circle.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.