Evaluating an Interest Using the Limit

Recall that the formula for compound interest is:

$$
A=P\left(1+\frac{r}{k}\right)^{k}
$$

and the anual percentage rate is:

$$
\mathrm{APR}=\left(1+\frac{r}{k}\right)^{k}-1
$$

Here P is the principal invested, r is the annual "simple" interest rate, A is the amount in the account at a given time, and k determines the frequency with which interest is added to the account.

As k approaches infinity interest is added more and more often; in the limit we say that the interest is compounded continuously.

1. Use the fact that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ to compute the APR of 5% compounded continuously.
2. Compute the APR of 10% compounded continuously.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

