Solving Equations with e and $\ln x$

We know that the natural log function $\ln(x)$ is defined so that if $\ln(a) = b$ then $e^b = a$. The common log function $\log(x)$ has the property that if $\log(c) = d$ then $10^d = c$. It's possible to define a logarithmic function $\log_b(x)$ for any positive base b so that $\log_b(e) = f$ implies $b^f = e$. In practice, we rarely see bases other than 2, 10 and e.

Solve for y:

- 1. $\ln(y+1) + \ln(y-1) = 2x + \ln x$
- 2. $\log(y+1) = x^2 + \log(y-1)$
- 3. $2 \ln y = \ln(y+1) + x$

Solve for x (hint: put $u = e^x$, solve first for u):

4.
$$\frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = y$$

5. $y = e^{x} + e^{-x}$

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.