Solving Equations with e and $\ln x$

We know that the natural \log function $\ln (x)$ is defined so that if $\ln (a)=b$ then $e^{b}=a$. The common \log function $\log (x)$ has the property that if $\log (c)=d$ then $10^{d}=c$. It's possible to define a logarithmic function $\log _{b}(x)$ for any positive base b so that $\log _{b}(e)=f$ implies $b^{f}=e$. In practice, we rarely see bases other than 2,10 and e.

Solve for y :

1. $\ln (y+1)+\ln (y-1)=2 x+\ln x$
2. $\log (y+1)=x^{2}+\log (y-1)$
3. $2 \ln y=\ln (y+1)+x$

Solve for x (hint: put $u=e^{x}$, solve first for u):
4. $\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=y$
5. $y=e^{x}+e^{-x}$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

