Implicit Differentiation and the Chain Rule

The chain rule tells us that:

$$
\frac{d}{d x}(f \circ g)=\frac{d f}{d g} \frac{d g}{d x} .
$$

While implicitly differentiating an expression like $x+y^{2}$ we use the chain rule as follows:

$$
\frac{d}{d x}\left(y^{2}\right)=\frac{d\left(y^{2}\right)}{d y} \frac{d y}{d x}=2 y y^{\prime}
$$

Why can we treat y as a function of x in this way?

Figure 1: The hyperbola $y^{2}-x^{2}=1$.
Consider the equation $y^{2}-x^{2}=1$, which describes the hyperbola shown in Figure 1. We cannot write y as a function of x, but if we start with a point (x, y) on the graph and then change its x coordinate by sliding the point along the graph its y coordinate will be constrained to change as well. The change in y is implied by the change in x and the constraint $y^{2}-x^{2}=1$. Thus, it makes sense to think about $y^{\prime}=\frac{d y}{d x}$, the rate of change of y with respect to x.

Given that $y^{2}-x^{2}=1$:
a) Use implicit differentiation to find y^{\prime}.
b) Check your work by using Figure 1 to estimate the slope of the tangent line to the hyperbola when $y=-1$ and when $x=1$.
c) Check your work for $y>0$ by solving for y and using the direct method to take the derivative.

Solution

a) Use implicit differentiation to find y^{\prime}.

We differentiate both sides of the equation $y^{2}-x^{2}=1$ to get:

$$
\begin{aligned}
2 y y^{\prime}-2 x & =0 \\
2 y y^{\prime} & =2 x \\
y^{\prime} & =\frac{2 x}{2 y} \\
y^{\prime} & =\frac{x}{y}
\end{aligned}
$$

b) Check your work by using Figure 1 to estimate the slope of the tangent line to the hyperbola when $y=-1$ and when $x=1$.

Figure 2: Tangent lines to the hyperbola $y^{2}-x^{2}=1$.
From the graph, we see that when $y=-1, x=0$ and so $y^{\prime}=x / y=0$. This agrees with the fact that at the point $(-1,0)$ the tangent line to the graph is horizontal.
When $x=1, y^{2}=2$ so $y= \pm \sqrt{2}$. At the point $(1, \sqrt{2})$ the slope of the tangent line is $y^{\prime}=x / y=1 / \sqrt{2} \approx 2 / 3$ and at $(1,-\sqrt{2})$ the slope of the tangent line is approximately $-2 / 3$.
c) Check your work for $y>0$ by solving for y and using the direct method to take the derivative.

We start by solving for y :

$$
\begin{aligned}
y^{2}-x^{2} & =1 \\
y^{2} & =1+x^{2} \\
y & = \pm \sqrt{1+x^{2}}
\end{aligned}
$$

We're told to consider the case $y>0$, in which $y=\sqrt{1+x^{2}}=\left(1+x^{2}\right)^{1 / 2}$.

$$
\begin{aligned}
\frac{d}{d x}\left(1+x^{2}\right)^{1 / 2} & =\frac{1}{2}\left(1+x^{2}\right)^{-1 / 2} \cdot 2 x \\
& =\frac{x}{\sqrt{1+x^{2}}} \\
& =\frac{x}{y}
\end{aligned}
$$

We conclude that for $y>0$, differentiating directly gives the same result as implicit differentiation.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

