Comparison of the Harmonic Series

We're going to compare:

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

to $\int_{1}^{\infty} \frac{d x}{x}$, using Riemann sums to show that the series diverges. The same sort of reasoning is applicable to the previous two examples.

We'll use a Riemann sum to calculate the area under the graph of $y=\frac{1}{x}$ using $\Delta x=1$. We also get to choose whether to compute the upper Riemann sum or lower; we'll do both.

Figure 1: Upper Riemann sum; $y=\frac{1}{x}$ (not to scale).
The upper Riemann sum is the sum of the areas of the rectangles indicated in Figure 1. If we stop at the rectangle just before N we see that the area under the curve from 1 to N is $\int_{0}^{N} \frac{d x}{x}$ and that that's less than the sum of the areas of the rectangles:

$$
\int_{1}^{N} \frac{d x}{x}<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N-1} .
$$

(There are only $N-1$ rectangles here because the distance between 1 and N is $N-1$.) If $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}$, then because there's one more term in the sum we have:

$$
\int_{1}^{N} \frac{d x}{x}<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N-1}<S_{N} .
$$

Thus we know that the value of the integral is less than the value of S_{N}. This will allow us to prove conclusively that the series diverges.

$$
\int_{1}^{N} \frac{d x}{x}<S_{N}
$$

$$
\begin{aligned}
\left.\ln x\right|_{1} ^{N} & <S_{N} \\
\ln N-\ln 1 & <S_{N} \\
\ln N-0 & <S_{N} \\
\ln N & <S_{N}
\end{aligned}
$$

As N goes to infinity, $\ln N$ goes to infinity and so S_{N} must also go to infinity. By definition,

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\lim _{N \rightarrow \infty} S_{N}
$$

so the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Figure 2: Lower Riemann sum; $y=\frac{1}{x}$ (not to scale).
Now we'll use the lower Riemann sum to see that S_{N} goes to infinity at the same rate as $\int_{1}^{N} \frac{d x}{x}$. Since the sum of the areas of the rectangles shown in Figure 2 is less than the area under the curve, we know that:

$$
\int_{1}^{N} \frac{d x}{x}>\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}=S_{N}-1
$$

Recall that $\int_{1}^{N} \frac{d x}{x}=\ln N$, so we get:

$$
\begin{aligned}
& S_{N}-1<\int_{1}^{N} \frac{d x}{x} \\
& S_{N}<(\ln N)+1
\end{aligned}
$$

Combining this with the result from the upper Riemann sum, we conclude:

$$
\ln N<S_{N}<(\ln N)+1
$$

The value of S_{N} is hard to calculate exactly, but now we know that it's between $\ln N$ and $(\ln N)+1$, which we can compute.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

