Weighted Average

The centroid or center of mass of a planar region is the point at which that region balances perfectly, like a plate on the end of a stick. The coordinates of the centroid are given by weighted averages.

The x coordinate of the centroid is $\bar{x}=\frac{\int x d A}{\int d A}$, where $d A$ is an infintessimal portion of area; the weighting function in this average is just x.

Similarly, the y coordinate of the centroid is $\bar{y}=\frac{\int y d A}{\int d A}$.
Find the centroid (\bar{x}, \bar{y}) of the parabolic region bounded by $x=-1, x=3$, $y=(x-1)^{2}$ and $y=4$.

Solution

We might guess from the symmetry of the region that $\bar{x}=1$. We'll do the computation for practice. Since we're integrating with respect to x, our area $d A$ will be a vertical rectangle with base at $y=(x-1)^{2}$, top at $y=4$ and width $d x$.

$$
\begin{aligned}
\bar{x} & =\frac{\int_{-1}^{3} x\left(4-(x-1)^{2}\right) d x}{\int_{-1}^{3}\left(4-(x-1)^{2}\right) d x} \\
\int_{-1}^{3} x\left(4-(x-1)^{2}\right) d x & =\int_{-1}^{3} 3 x-x^{3}+2 x^{2} d x \\
& =\left[\frac{3}{2} x^{2}-\frac{1}{4} x^{4}+\frac{2}{3} x^{3}\right]_{-1}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{3}{2} \cdot 9-\frac{1}{4} \cdot 81+\frac{2}{3} \cdot 27\right)-\left(\frac{3}{2}-\frac{1}{4}-\frac{2}{3}\right) \\
& =10 \frac{2}{3} \\
\int_{-1}^{3}\left(4-(x-1)^{2}\right) d x & =\int_{-1}^{3} 3-x^{2}+2 x d x \\
& =\left[3 x-\frac{1}{3} x^{3}+x^{2}\right]_{-1}^{3} \\
& =\left(3 \cdot 3-\frac{1}{3} \cdot 27+9\right)-\left(-3+\frac{1}{3}+1\right) \\
& =10 \frac{2}{3}
\end{aligned}
$$

We conclude that $\bar{x}=\frac{10 \frac{2}{3}}{10 \frac{2}{3}}=1$.
To find \bar{y} we will be integrating with respect to y. Our area $d A$ will have width equal to the width of the region and height $d y$. The left side of the region has the equation $x=1-\sqrt{y}$ and the right side has equation $x=1+\sqrt{y}$, so the width is $(1+\sqrt{y})-(1-\sqrt{y})=2 \sqrt{y}$.

$$
\begin{aligned}
& \bar{y}=\frac{\int_{0}^{4} y(2 \sqrt{y}) d y}{\int_{0}^{4} 2 \sqrt{y} d y} \\
& \int_{0}^{4} y(2 \sqrt{y}) d y=2 \int_{0}^{4} y^{3 / 2} d y \\
&=\left.2 \cdot \frac{2}{5} y^{5 / 2}\right|_{0} ^{4} \\
&=\frac{4}{5}\left(2^{5}-0\right) \\
&=\frac{2^{7}}{5} \\
& \int_{0}^{4} 2 \sqrt{y} d y=2 \int_{0}^{4} y^{1 / 2} d y \\
&=\left.2 \cdot \frac{2}{3} y^{3 / 2}\right|_{0} ^{4} \\
&=\frac{4}{3} \cdot\left(2^{3}-0\right) \\
&=\frac{2^{5}}{3}
\end{aligned}
$$

Hence, $\bar{y}=\frac{\frac{2^{7}}{5}}{\frac{2^{5}}{3}}=\frac{12}{5}=2.4$.
The center of mass of the parabolic region is at (1,2.4); this seems plausible given that the top of the parabola ($y=4$) will weigh more than the bottom ($y=0$).

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

