Average Bank Balance

An amount of money A_{0} compounded continuously at interest rate r increases according to the law:

$$
A(t)=A_{0} e^{r t} \quad(t=\text { time in years. })
$$

a) What is the average amount of money in the bank over the course of T years?
b) Check your work by plugging in $A_{0}=\$ 100, r=.05$ and $T=1$; does the result seem plausible?

Solution

a) What is the average amount of money in the bank over the course of T years?

The average value of a function $f(x)$ over the interval $[a, b]$ is:

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

In our example, the function is $A(t)=A_{0} e^{r t}$ and the interval is $[0, T]$. Noting that the antiderivative of $e^{r t}$ is $\frac{1}{r} e^{r t}$, we find:

$$
\begin{aligned}
\operatorname{Avg}(A) & =\frac{1}{T-0} \int_{0}^{T} A_{0} e^{r t} d t \\
& =\left.A_{0} \frac{1}{r T} e^{r t}\right|_{0} ^{T} \\
& =\frac{A_{0}}{r T}\left(e^{r T}-e^{0}\right) \\
\operatorname{Avg}(A) & =\frac{A_{0}}{r T}\left(e^{r T}-1\right)
\end{aligned}
$$

This is the difference between the final and initial balance, divided by rate times time!
b) Check your work by plugging in $A_{0}=\$ 100, r=.05$ and $T=1$; does the result seem plausible?
If $r=.05$ and $T=1$ then:

$$
\begin{aligned}
\operatorname{Avg}(A) & =\frac{\$ 100}{.05}\left(e^{.05}-1\right) \\
& =\$ 102.5
\end{aligned}
$$

This seems plausible because if we were dealing with simple interest (rather than continuously compounded interest), our starting balance would be $\$ 100$ and our final balance would be $\$ 105$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

