Arc Length of $y=\ln (x)$

Express the arc length of the graph of $y=\ln x$ between $x=1 / 10$ and $x=1$ as an integral. (Do not evaluate.)

Solution

The formula for arc length is: $\int_{\text {start }}^{\text {finish }} d s$.
If the arc is a portion of the graph of $y=f(x)$ then $d s=\sqrt{d x+d y}$ or, equivalently:

$$
\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

In our example, $y=\ln x$ and $\frac{d y}{d x}=\frac{1}{x}$, so:

$$
\begin{aligned}
\text { Arc length } & =\int_{1 / 10}^{1} \sqrt{1+\left(\frac{1}{x}\right)^{2}} d x \\
& =\int_{1 / 10}^{1} \frac{\sqrt{x^{2}+1}}{x} d x
\end{aligned}
$$

If we were to evaluate this integral, using numerical or other methods, we should find that its value is slightly greater than the value of $|\ln (1 / 10)|=\ln (10)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

