Exploiting Derivative Rules

Every differentiation rule $F^{\prime}(x)=f(x)$ corresponds to a rule for finding the anti-derivative $F(x)$ of some function f.
a) Find an anti-derivative rule that is the inverse of the sum rule $(f+g)^{\prime}(x)=$ $f^{\prime}(x)+g^{\prime}(x)$.
b) Find an anti-derivative rule that is the inverse of the product rule $(f \cdot g)^{\prime}(x)=$ $f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$.

Solution

a) Find an anti-derivative rule that is the inverse of the sum rule $(u+v)^{\prime}=$ $u^{\prime}+v^{\prime}$.

If F and G are the anti-derivatives of f and g, respectively, then the antiderivative of:

$$
f(x)+g(x)
$$

is:

$$
F(x)+G(x)
$$

We can check this result by differentiating.
b) Find an anti-derivative rule that is the inverse of the product rule $(u \cdot v)^{\prime}=$ $u v^{\prime}+u^{\prime} v$.
If F and G are the anti-derivatives of f and g, respectively, then the antiderivative of:

$$
F(x) g(x)+f(x) G(x)
$$

is:

$$
F(x) \cdot G(x)
$$

Later we will study a technique called "integration by parts", which is closely related to this anti-differentiation formula. It relies upon the fact that the anti-derivative of $F(x) g(x)$ is equal to $F(x) G(x)$ minus the anti-derivative of $G(x) f(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

