Volume of a Spheroid

The solid of revolution generated by rotating (either half of) the region bounded by the curves $x^{2}+4 y^{2}=4$ and $x=0$ about the y-axis is an example of an oblate spheroid. Compute its volume.

Solution

We could calculate the volume using shells or disks. The equation describing x as a function of y is slightly simpler than that describing y as a function of x, so we'll integrate with respect to y and use disks.

First, we solve for x :

$$
\begin{aligned}
x^{2}+4 y^{2} & =4 \\
x^{2} & =4-4 y^{2} \\
x & = \pm \sqrt{4-4 y^{2}} \\
x & = \pm 2 \sqrt{1-y^{2}}
\end{aligned}
$$

We're told we can use either half of the region, so we'll choose $x=2 \sqrt{1-y^{2}}$.
Next we determine the limits of integration. If we're familiar with ellipses, we know that $(0,1)$ and $(0,-1)$ are the highest and lowest points on the ellipse. If not, we can at least observe that the expression describing x is undefined when $|y|>1$. Hence our limits of integration are $y=-1$ and $y=1$.

Our integral sums the volumes of disks with radius $2 \sqrt{1-y^{2}}$ and height $d y$:

$$
\begin{aligned}
\int_{-1}^{1} \pi\left(2 \sqrt{1-y^{2}}\right)^{2} d y & =4 \pi \int_{-1}^{1} 1-y^{2} d y \\
& =4 \pi\left[y-\frac{y^{3}}{3}\right]_{-1}^{1} \\
& =4 \pi\left[\left(1-\frac{1}{3}\right)-\left(-1-\left(-\frac{1}{3}\right)\right)\right] \\
& =\frac{16 \pi}{3}
\end{aligned}
$$

This is two thirds of the volume of a cylinder containing the spheroid, so is probably correct.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

