Integral of $\frac{x^{3}}{x^{2}-1}$

Express the integrand as a sum of a polynomial and a proper rational function, then integrate:

$$
\int \frac{x^{3}}{x^{2}-1} d x
$$

Solution

The numerator of the integrand has a higher degree than the denominator, so we must use long division to convert the integrand from an "improper fraction" to a "mixed fraction".
$\left.x^{2}-1\right) \frac{x}{x^{3}}$

$$
\frac{-x^{3}+x}{x}
$$

We can now write $\frac{x^{3}}{x^{2}-1}=x+\frac{x}{x^{2}-1}$. (Substituting 2 for x gives us $\frac{8}{3}=2+\frac{2}{3}$, so this is probably correct.)

The remainder of the calculation is fairly simple, involving one substitution of $u=x^{2}-1, d u=2 x d x$.

$$
\begin{aligned}
\int \frac{x^{3}}{x^{2}-1} d x & =\int x+\frac{x}{x^{2}-1} d x \\
& =\frac{1}{2} x^{2}+\frac{1}{2} \ln |u|+c \\
& =\frac{1}{2} x^{2}+\frac{1}{2} \ln \left|x^{2}-1\right|+c
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

