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18.02 Multivariable Calculus, Fall 2007 
Transcript – Lecture 6 

So, if you remember last time, we looked at parametric equations -- -- as a way of 
describing the motion of a point that moves in the plane or in space as a function of 
time of your favorite parameter that will tell you how far the motion has progressed. 
And, I think we did it in detail the example of the cycloid, which is the curve traced 
by a point on a wheel that's rolling on a flat surface. 

So, we have this example where we have this wheel that's rolling on the x-axis, and 
we have this point on the wheel. And, as it moves around, it traces a trajectory that 
moves more or less like this. OK, so I'm trying a new color. Is this visible from the 
back? So, no more blue. OK, so remember, in general, we are trying to find the 
position, so, x of t, y of t, maybe z of t if we are in space -- -- of a moving point 
along a trajectory. 

And, one way to think about this is in terms of the position vector. So, position 
vector is just the vector whose components are coordinates of a point, OK, so if you 
prefer, that's the same thing as a vector from the origin to the moving point. So, 
maybe our point is here, P. So, this vector here -- This vector here is vector OP. And, 
that's also the position vector r of t. So, just to give you, again, that example -- -- if 
I take the cycloid for a wheel of radius 1, 

and let's say that we are going at unit speed so that the angle that we used as a 
parameter of time is the same thing as time when the position vector, in this case, 
we found to be, just to make sure that they have it right, <t - sin(t),1-cos(t)>. OK, 
that's a formula that you should have in your notes from last time, except we had 
theta instead of t because we were using the angle. But now I'm saying, we are 
moving at unit speed, so time and angle are the same thing. 

So, now, what's interesting about this is we can analyze the motion in more detail. 
OK, so, now that we know the position of the point as a function of time, we can try 
to study how it varies in particular things like the speed and acceleration. OK, so let's 
start with speed. Well, in fact we can do better than speed. Let's not start with 
speed. So, speed is a number. It tells you how fast you are going along your 
trajectory. 

I mean, if you're driving in a car, then it tells you how fast you are going. But, unless 
you have one of these fancy cars with a GPS, it doesn't tell you which direction 
you're going. And, that's useful information, too, if you're trying to figure out what 
your trajectory is. So, in fact, there's two aspects to it. One is how fast you are 
going, and the other is in what direction you're going. 

That means actually we should use a vector maybe to think about this. And so, that's 
called the velocity vector. And, the way we can get it, so, it's called usually V, so, V 
here stands for velocity more than for vector. And, you just get it by taking the 
derivative of a position vector with respect to time. Now, it's our first time writing 



this kind of thing with a vector. So, the basic rule is you can take the derivative of a 
vector quantity just by taking the derivatives of each component. 

OK, so that's just dx/dt, dy/dt, and if you have z component, dz/dt. So, let me -- OK, 
so -- OK, so let's see what it is for the cycloid. So, an example of a cycloid, well, so 
what do we get when we take the derivatives of this formula there? Well, so, the 
derivative of t is 1- cos(t). The derivative of 1 is 0. The derivative of -cos(t) is sin(t). 
Very good. OK, that's at least one thing you should remember from single variable 
calculus. 

Hopefully you remember even more than that. OK, so that's the velocity vector. It 
tells us at any time how fast we are going, and in what direction. So, for example, 
observe. Remember last time at the end of class we were trying to figure out what 
exactly happens near the bottom point, when we have this motion that seems to 
stop and go backwards. And, we answered that one way. But, let's try to understand 
it in terms of velocity. 

What if I plug t equals 0 in here? Then, 1- cos(t) is 0, sin(t) is 0. The velocity is 0. 
So, at the time,at that particular time, our point is actually not moving. Of course, 
it's been moving just before, and it starts moving just afterwards. It's just the 
instant, at that particular instant, the speed is zero. So, that's especially maybe a 
counterintuitive thing, but something is moving. And at that time, it's actually 
stopped. 

Now, let's see, so that's the vector. And, it's useful. But, if you want just the usual 
speed as a number, then, what will you do? Well, you will just take exactly the 
magnitude of this vector. So, speed, which is the scalar quantity is going to be just 
the magnitude of the vector, V. OK, so, in this case, while it would be square root of 
(1- cost)^2 sin^2(t), and if you expand that, you will get, 

let me take a bit more space, it's going to be square root of 1 - 2cos(t) cos^2(t) 
sin^2(t). It seems to simplify a little bit because we have cos^2 plus sin^2. That's 1. 
So, it's going to be the square root of 2 - 2cos(t). So, at this point, if I was going to 
ask you, when is the speed the smallest or the largest? You could answer based on 
that. See, at t equals 0, well, that turns out to be zero. 

The point is not moving. At t equals pi, that ends up being the square root of 2 plus 
2, which is 4. So, that's 2. And, that's when you're truly at the top of the arch, and 
that's when the point is moving the fastest. In fact, they are spending twice as fast 
as the wheel because the wheel is moving to the right at unit speed, and the wheel is 
also rotating. So, it's moving to the right and unit speed relative to the center so that 
the two effects add up, and give you a speed of 2. 

Anyway, that's a formula we can get. OK, now, what about acceleration? So, here I 
should warn you that there is a serious discrepancy between the usual intuitive 
notion of acceleration, the one that you are aware of when you drive a car and the 
one that we will be using. So, you might think acceleration is just the directive of 
speed. If my car goes 55 miles an hour on the highway and it's going a constant 
speed, it's not accelerating. 

But, let's say that I'm taking a really tight turn. Then, I'm going to feel something. 
There is some force being exerted. And, in fact, there is a sideways acceleration at 
that point even though the speed is not changing. So, the definition will take effect. 



The acceleration is, as a vector, and the acceleration vector is just the derivative of a 
velocity vector. So, even if the speed is constant, that means, even if a length of the 
velocity vector stays the same, the velocity vector can still rotate. 

And, as it rotates, it uses acceleration. OK, and so this is the notion of acceleration 
that's relevant to physics when you find F=ma; that's the (a) that you have in mind 
here. It's a vector. Of course, if you are moving in a straight line, then the two 
notions are the same. I mean, acceleration is also going to be along the line, and it's 
going to has to do with the derivative of speed. But, in general, that's not quite the 
same. 

So, for example, let's look at the cycloid. If we take the example of the cycloid, well, 
what's the derivative of one minus cos(t)? It's sin(t). And, what's the derivative of 
sin(t)? cos(t), OK. So, the acceleration vector is <sin(t), cos(t)>. So, in particular, 
let's look at what happens at time t equals zero when the point is not moving. Well, 
the acceleration vector there will be zero from one. 

So, what that means is that if I look at my trajectory at this point, that the 
acceleration vector is pointing in that direction. It's the unit vector in the vertical 
direction. So, my point is not moving at that particular time. But, it's accelerating up. 
So, that means that actually as it comes down, first it's slowing down. Then it stops 
here, and then it reverses going back up. OK, so that's another way to understand 
what we were saying last time that the trajectory at that point has a vertical 
tendency because that's the direction in which the motion is going to occur just 
before and just after time zero. 

OK, any questions about that? No. OK, so I should insist maybe on one thing, which 
is that, so, we can differentiate vectors just component by component, OK, and we 
can differentiate vector expressions according to certain rules that we'll see in a 
moment. One thing that we cannot do, it's not true that the length of dr dt, which is 
the speed, is equal to the length of dt. OK, this is completely false. 

And, they are really not the same. So, if you have to differentiate the length of a 
vector, but basically you are in trouble. If you really, really want to do it, well, the 
length of the vector is the square root of the sums of the squares of the components, 
and from that you can use the formula for the derivative of the square root, and the 
chain rule, and various other things. And, you can get there. 

But, it will not be a very nice expression. There is no simple formula for this kind of 
thing. Fortunately, we almost never have to compute this kind of thing because, 
after all, it's not a very relevant quantity. What's more relevant might be this one. 
This is actually the speed. This one, I don't know what it means. OK. So, let's 
continue our exploration. So, the next concept that I want to define is that of arc 
length. 

So, arc length is just the distance that you have traveled along the curve, OK? So, if 
you are in a car, you know, it has mileage counter that tells you how far you've 
gone, how much fuel you've used if it's a fancy car. And, what it does is it actually 
integrates the speed of the time to give you the arc length along the trajectory of the 
car. So, the usual notation that we will have is (s) for arc length. 

I'm not quite sure how you get an (s) out of this, but it's the usual notation. OK, so, 
(s) is for distance traveled along the trajectory. And, so that makes sense, of course, 



we need to fix a reference point. Maybe on the cycloid, we'd say it's a distance 
starting on the origin. In general, maybe you would say you start at time, t equals 
zero. But, it's a convention. If you knew in advance, you could have, 

actually, your car's mileage counter to count backwards from the point where the car 
will die and start walking. I mean, that would be sneaky-freaky, but you could have 
a negative arc length that gets closer and closer to zero, and gets to zero at the end 
of a trajectory, or anything you want. I mean, arc length could be positive or 
negative. Typically it's negative what you are before the reference point, and positive 
afterwards. 

So, now, how does it relate to the things we've seen there? Well, so in particular, 
how do you relate arc length and time? Well, so, there's a simple relation, which is 
that the rate of change of arc length versus time, well, that's going to be the speed 
at which you are moving, OK, because the speed as a scalar quantity tells you how 
much distance you're covering per unit time. OK, and in fact, to be completely 
honest, 

I should put an absolute value here because there is examples of curves maybe 
where your motion is going back and forth along the same curve. And then, you 
don't want to keep counting arc length all the time. Actually, maybe you want to say 
that the arc length increases and then decreases along the curve. I mean, you get to 
choose how you count it. But, in this case, if you are moving back and forth, it would 
make more sense to have the arc length first increase, 

then decrease, increase again, and so on. So -- So if you want to know really what 
the arc length is, then basically the only way to do it is to integrate speed versus 
time. So, if you wanted to know how long an arch of cycloid is, you have this nice-
looking curve; how long is it? Well, you'd have to basically integrate this quantity 
from t equals zero to 2 pi. And, to say the truth, I don't really know how to integrate 
that. 

So, we don't actually have a formula for the length at this point. However, we'll see 
one later using a cool trick, and multi-variable calculus. So, for now, we'll just leave 
the formula like that, and we don't know how long it is. Well, you can put that into 
your calculator and get the numerical value. But, that's the best I can offer. Now, 
another useful notion is the unit vector to the trajectory. 

So, the usual notation is T hat. It has a hat because it's a unit vector, and T because 
it's tangent. Now, how do we get this unit vector? So, maybe I should have pointed 
out before that if you're moving along some trajectory, say you're going in that 
direction, then when you're at this point, the velocity vector is going to be tangential 
to the trajectory. It tells you the direction of motion in particular. 

So, if you want a unit vector that goes in the same direction, all you have to do is 
rescale it, so, at its length becomes one. So, it's v divided by a magnitude of v. So, it 
seems like now we have a lot of different things that should be related in some way. 
So, let's see what we can say. Well, we can say that dr by dt, so, that's the velocity 
vector, that's the same thing as if I use the chain rule dr/ds times ds/dt. 

OK, so, let's think about this things. So, this guy here we've just seen. That's the 
same as the speed, OK? So, this one here should be v divided by its length. So, that 
means this actually should be the unit vector. OK, so, let me rewrite that. It's T 



ds/dt. So, maybe if I actually stated directly that way, see, I'm just saying the 
velocity vector has a length and a direction. The length is the speed. 

The direction is tangent to the trajectory. So, the speed is ds/dt, and the vector is T 
hat. And, that's how we get this. So, let's try just to see why dr/ds should be T. Well, 
let's think of dr/ds. dr/ds means position vector r means you have the origin, which 
is somewhere out there, and the vector r is here. So, dr/ds means we move by a 
small amount, delta s along the trajectory a certain distance delta s. 

And, we look at how the position vector changes. Well, we'll have a small change. 
Let me call that vector delta r corresponding to the size, corresponding to the length 
delta s. And now, delta r should be essentially roughly equal to, well, its direction will 
be tangent to the trajectory. If I take a small enough interval, then the direction will 
be almost tensioned to the trajectory times the length of it will be delta s, 

the distance that I have traveled. OK, sorry, maybe I should explain that on a 
separate board. OK, so, let's say that we have that amount of time, delta t. So, let's 
zoom into that curve. So, we have r at time t. We have r at time t plus delta t. This 
vector here I will call delta r. The length of this vector is delta s. And, the direction is 
essentially that of a vector. OK, so, delta s over delta t, that's the distance traveled 
divided by the time. 

That's going to be close to the speed. And, delta r is approximately T times delta s. 
So, now if I divide both sides by delta t, I get this. And, if I take the limit as delta t 
turns to zero, then I get the same formula with the derivatives and with an equality. 
It's an approximation. The approximation becomes better and better if I go to 
smaller intervals. OK, are there any questions about this? 

Yes? Yes, that's correct. OK, so let's be more careful, actually. So, you're asking 
about whether the delta r is actually strictly tangent to the curve. Is that -- That's 
correct. Actually, delta r is not strictly tangent to anything. So, maybe I should draw 
another picture. If I'm going from here to here, then delta r is going to be this arc 
inside the curve while the vector will be going in this direction, OK? 

So, they are not strictly parallel to each other. That's why it's only approximately 
equal. Similarly, this distance, the length of delta r is not exactly the length along 
the curve. It's actually a bit shorter. But, if we imagine a smaller and smaller portion 
of the curve, then this effect of the curve being a curve and not a straight line 
becomes more and more negligible. If you zoom into the curve sufficiently, then it 
looks more and more like a straight line. 

And then, what I said becomes true in the limit. OK? Any other questions? No? OK. 
So, what happens next? OK, so let me show you a nice example of why we might 
want to use vectors to study parametric curves because, after all, a lot of what's 
here you can just do in coordinates. And, we don't really need vectors. Well, and 
truly, vectors being a language, you never strictly need it, but it's useful to have a 
notion of vectors. 

So, I want to tell you a bit about Kepler's second law of celestial mechanics. So, that 
goes back to 1609. So, that's not exactly recent news, OK? But, still I think it's a 
very interesting example of why you might want to use vector methods to analyze 
motions. So, what happened back then was Kepler was trying to observe the motion 



of planets in the sky, and trying to come up with general explanations of how they 
move. 

Before him, people were saying, well, they cannot move in a circle. But maybe it's 
more complicated than that. We need to add smaller circular motions on top of each 
other, and so on. They have more and more complicated theories. And then Kepler 
came with these laws that said basically that planets move in an ellipse around the 
sun, and that they move in a very specific way along that ellipse. 

So, there's actually three laws, but let me just tell you about the second one that has 
a very nice vector interpretation. So, what Kepler's second law says is that the 
motion of planets is, first of all, they move in a plane. And second, the area swept 
out by the line from the sun to the planet is swept at constant time. Sorry, is swept 
at constant rate. From the sun to the planet, it is swept out by the line at a constant 
rate. 

OK, so that's an interesting law because it tells you, once you know what the orbit of 
the planet looks like, it tells you how fast it's going to move on that orbit. OK, so let 
me explain again. So, this law says maybe the sun, let's put the sun here at the 
origin, and let's have a planet. Well, the planet orbits around the sun -- -- in some 
trajectory. So, this is supposed to be light blue. Can you see that it's different from 
white? No? OK, me neither. 

[LAUGHTER] OK, it doesn't really matter. So, the planet moves on its orbit. And, if 
you wait for a certain time, then a bit later it would be here, and then here, and so 
on. Then, you can look at the amount of area inside this triangular wedge. And, the 
claim is that the amount of area in here is proportional to the time elapsed. So, in 
particular, if a planet is closer to the sun, then it has to go faster. 

And, if it's farther away from the sun, then it has to go slower so that the area 
remains proportional to time. So, it's a very sophisticated prediction. And, I think the 
way he came to it was really just by using a lot of observations, and trying to 
measure what was true that wasn't true. But, let's try to see how we can understand 
that in terms of all we know today about mechanics. So, in fact, what happens is 
that Newton, so Newton was quite a bit later. 

That was the late 17th century instead of the beginning of the 17th century. So, he 
was able to explain this using his laws for gravitational attraction. And, you'll see 
that if we reformulate Kepler's Law in terms of vectors, and if we work a bit with 
these vectors, we are going to end up with something that's actually completely 
obvious to us now. At the time, it was very far from obvious, but to us now to 
completely obvious. 

So, let's try to see, what does Kepler's law say in terms of vectors? OK, so, let's 
think of what kinds of vectors we might want to have in here. Well, it might be good 
to think of, maybe, the position vector, and maybe its variation. So, if we wait a 
certain amount of time, we'll have a vector, delta r, which is the change in position 
vector a various interval of time. OK, so let's start with the first step. 

What's the most complicated thing in here? It's this area swept out by the line. How 
do we express that area in terms of vectors? Well, I've almost given the answer by 
drawing this picture, right? If I take a sufficiently small amount of time, this shaded 
part looks like a triangle. So, we have to find the area of the triangle. Well, we know 



how to do that now. So, the area is approximately equal to one half of the area of a 
parallelogram that I could form from these vectors. 

And, the area of a parallelogram is given by the magnitude of a cross product. OK, 
so, I should say, this is the area swept in time delta t. You should think of delta t as 
relatively small. I mean, the scale of a planet that might still be a few days, but 
small compared to the other old trajectory. So, let's remember that the amount by 
which we moved, delta r, is approximately equal to v times delta t, 

OK, and just using the definition of a velocity vector. So, let's use that. Sorry, so it's 
approximately equal to r cross v magnitude times delta t. I can take out the delta t, 
which is scalar. So, now, what does it mean to say that area is swept at a constant 
rate? It means this thing is proportional to delta t. So, that means, so, the law says, 
in fact, that the length of this cross product r cross v equals a constant. 

OK, r cross v has constant length. Any questions about that? No? Yes? Yes, let me 
try to explain that again. So, what I'm claiming is that the length of the cross 
products r cross v measures the rate at which area is swept by the position vector. I 
should say, with a vector of one half of this length is the rate at which area is swept. 
How do we see that? Well, let's take a small time interval, delta t. 

In time, delta t, our planet moves by v delta t, OK? So, if it moves by v delta t, it 
means that this triangle up there has two sides. One is the position vector, r. The 
other one is v delta t. So, its area is given by one half of the magnitude of a cross 
product. That's the formula we've seen for the area of a triangle in space. So, the 
area is one half of the cross product, r, and v delta t, magnitude of the cross 
product. 

So, to say that the rate at which area is swept is constant means that these two are 
proportional. Area divided by delta t is constant at our time. And so, this is constant. 
OK, now, what about the other half of the law? Well, it says that the motion is in a 
plane, and so we have a plane in which the motion takes place. And, it contains, 
also, the sun. And, it contains the trajectory. So, let's think about that plane. 

Well, I claim that the position vector is in the plane. OK, that's what we are saying. 
But, there is another vector that I know it is in the plane. You could say the position 
vector at another time, or at any time, but in fact, what's also true is that the 
velocity vector is in the plane. OK, if I'm moving in the plane, then position and 
velocity are in there. So, the plane of motion contains r and v. 

So, what's the direction of the cross product r cross v? Well, it's the direction that's 
perpendicular to this plane. So, it's normal to the plane of motion. And, that means, 
now, that actually we've put the two statements in there into a single form because 
we are saying r cross v has constant length and constant direction. In fact, in 
general, maybe I should say something about this. So, if you just look at the position 
vector, and the velocity vector for any motion at any given time, then together, they 
determine some plane. 

And, that's the plane that contains the origin, the point, and the velocity vector. If 
you want, it's the plane in which the motion seems to be going at the given time. 
Now, of course, if your motion is not in a plane, then that plane will change. It's, 
however, instant, if a plane in which the motion is taking place at a given time. And, 



to say that the motion actually stays in that plane forever means that this guy will 
not change direction. 

OK, so -- [LAUGHTER] [APPLAUSE] OK, so, Kepler's second law is actually equivalent 
to saying that r cross v equals a constant vector, OK? That's what the law says. So, 
in terms of derivatives, it means d by dt of r cross v is the zero vector. OK, now, so 
there's an interesting thing to note, which is that we can use the usual product rule 
for derivatives with vector expressions, with dot products or cross products. 

There's only one catch, which is that when we differentiate a cross product, we have 
to be careful that the guy on the left stays on the left. The guy on the right stays on 
the right. OK, so, if you know that uv prime equals u prime v plus uv prime, then 
you are safe. If you know it as u prime v cross v prime u, then you are not safe. OK, 
so it's the only thing to watch for. So, product rule is OK for taking the derivative of 
a dot product. 

There, you don't actually even need to be very careful about all the things or the 
derivative of a cross product. There you just need to be a little bit more careful. OK, 
so, now that we know that, we can write this as dr/dt cross v plus r cross dv/dt, OK? 
Well, let's reformulate things slightly. So, dr dt already has a name. In fact, that's v. 
OK, that's what we call the velocity vector. So, this is v cross v plus r cross, what is 
dv/dt? 

That's the acceleration, a, equals zero. OK, so now what's the next step? Well, we 
know what v cross v is because, remember, a vector cross itself is always zero, OK? 
So, this is the same r cross a equals zero, and that's the same as saying that the 
cross product of two vectors is zero exactly when the parallelogram of the form has 
no area. And, the way in which that happens is if they are actually parallel to each 
other. 

So, that means the acceleration is parallel to the position. OK, so, in fact, what 
Kepler's second law says is that the acceleration is parallel to the position vector. 
And, since we know that acceleration is caused by a force that's equivalent to the 
fact that the gravitational force -- -- is parallel to the position vector, that means, 
well, if you have the sun here at the origin, and if you have your planets, well, the 
gravitational force caused by the sun should go along this line. 

In fact, the law doesn't even say whether it's going towards the sun or away from 
the sun. Well, what we know now is that, of course, the attraction is towards the 
sun. But, Kepler's law would also be true, actually, if things were going away. So, in 
particular, say, electric force also has this property of being towards the central 
charge. So, actually, if you look at motion of charged particles in an electric field 
caused by a point charged particle, it also satisfies Kepler's law, satisfies the same 
law. 

OK, that's the end for today, thanks. 


