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additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. We are going to
continue to look at stuff in space. We have been working with triple integrals and seeing how to set them up in all
sorts of coordinate systems. And the next topic we will be looking at are vector fields in space. And so, in
particular, we will be learning about flux and work. So, just for a change, we will be starting with flux first. And we
will do work, actually, after Thanksgiving. Just to remind you, a vector field in space is just the same thing as in the
plane. At every point you have a vector, and the components of this vector depend on the coordinates x, y and z.
Let's say the components might be P, Q, R, or your favorite three letters, where each of these things is a function
of coordinates x, y, z. You have seen that in the plane it is already pretty hard to draw a vector field. Usually, in
space, we won't really try too hard. But it is still useful to try to have a general idea for what the vectors in there
are doing, whether they are all going in the same direction, whether they may be all vertical or horizontal, pointing
away from the origin, towards it, things like that. But, generally-speaking, we won't really bother with trying to draw
a picture because that is going to be quite hard. Just to give you examples, well, the same kinds of examples as
the plane, you can think of force fields. For example, the gravitational attraction -- -- of a solid mass, let's call this
mass big M, at the origin on a mass M at point x, y, z. That would be given by a vector field that points toward the
origin and whose magnitude is inversely proportional to the square of a distance from the origin. Such a field
would be directed towards the origin and its magnitude would be of the order of a constant over pho squared
where pho is the distance from the origin. The picture, if I really wanted to draw a picture, would be everywhere it
is a field that points towards the origin. And if I am further away then it gets smaller. And, of course, I am not going
to try to draw all these vectors in there. If I wanted to give a formula for that -- A formula for that might be
something of a form minus c times x, y, z over pho cubed. Let's see. Well, the direction of this vector, this vector is
proportional to negative x, y, z. is the vector that goes from the origin to your point. The negative goes towards the
origin. Then the magnitude of this guy, well, the magnitude of x, y, z is just the distance from the origin rho. So the
magnitude of this thing is one over rho cubed times some constant factor. That would be an example of a vector
field that comes up in physics. Well, other examples would be electric fields. Actually, if you look at the electric field
generated by a charged particle at the origin, it is given by exactly the same kind of formula, and there are
magnetic fields and so on. Another example comes from velocity fields. If you have a fluid flow, for example, if you
want to study wind patterns in the atmosphere. Well, wind, most of the time, is kind of horizontal, but maybe it
depends on the altitude. At high altitude you have jet streams, and the wind velocity is not the same at all altitudes.
And, just to give you more examples, in math we have seen that the gradient of a function of three variables gives
you a vector field. If you have a function u of x, y, z then its gradient field has just components, u sub x, u sub y
and u sub z. And, of course, the cases are not mutually exclusive. For example, the electric field or gravitational
field is given by the gradient of the gravitational or electric potential. So, these are not like different cases. There is
overlap. Anyway, hopefully, you are kind of convinced that you should learn about vector fields. What are we going
to do with them? Well, let's start with flux. Remember not so long ago we looked at flux of a two-dimensional field
of a curve. We had a curve in the plane and we had a vector field. And we looked at the component of a vector
field in the direction that was normal to the curve. We formed the flux integral that was a line integral F dot n ds.
And that measured how much the vector field was going across the curve. If you were thinking of a velocity field,
that would measure how much fluid is passing through the curve in unit time. Now let's say that we were in space.
Well, we cannot really think of flux as a line integral. Because, if you have a curve in space and say that you have
wind or something like that, you cannot really ask how much air is flowing through the curve. See, to have a flow
through something you need a surface. If you have a net maybe then you can ask how much stuff is passing
through that surface. There is going to be a big difference here. In the three-dimensional space, flux will be
measured through a surface. And so it will be a surface integral, not a line integral anymore. That means we will
be integrating, we will be summing over all the pieces of a surface in space. Because a surface is a two-
dimensional object, that will end up being a double integral. But, of course, we will have to set it up properly
because the surface that is in space, and we will probably have x, y and z to deal with at the same time, and we
will have to somehow get rid of one variable so that we can set up and evaluate a double integral. So conceptually
it is very similar to line integrals. In the line integral in the plane, you had two variables that you reduced to one by
figuring out what the curve was. Here you have three variables that you will reduce to two by figuring out what the
surface is. Let me give you a definition of flux in 3D. Let's say that we have a vector field and s, a surface in space.
Let me draw some kind of a picture. I have my surface and I have my vector field F. Well, at every point it changes
with a point. Well, I want to figure out how much my vector field is going across that surface. That means I want to
figure out the normal component of my vector field, so I will use, as in the plane case, the unit normal vector to s. I
take my point on the surface and build a unit vector that is standing on it perpendicularly. Now, we have to decide
which way it is standing. We can build our normal vector to go this way or to go the other way around. There are
two choices. Basically, whenever you want to set up a flux integral you have to choose one side of the surface.
And you will count positively what flows toward that side and negatively what flows towards the other side. There
are two choices for n. We need to choose a side of the surface. In the case of curves, we made that choice by
deciding that because we were going along some direction on the curve we could choose one side by saying let's
rotate clockwise from the tangent vector. And, in a way, what we were doing was really it was a recipe to choose
for us one of the two sides. Here we don't have a notion of orienting the surface other than by precisely choosing
one of the two possible normal vectors. So, in fact, this is called choosing an orientation of a surface. When you
are saying you are orienting the surface that really means you are deciding which side is which. Let's call that
orientation. Now, there is no set convention that will work forever. But the usually traditional settings would be to



orientation. Now, there is no set convention that will work forever. But the usually traditional settings would be to
take your normal vector pointing maybe out of the solid region because then you will be looking at flux that is
coming out of that region of space. Or, if you have a surface that is not like closed or anything but maybe you will
want the flux going up through the region. Or, there are various conventions. Concretely, on problem sets it will
either say which choice you have to make or you get to choose which one you want to make. And, of course, if
you choose the other one then the sign becomes the opposite. Now, once we have made a choice then we can
define the flux integral. It will just be the double integral over a surface of F dot n dS. Now I am using a big dS.
That stands for the surface area element on this surface. I am using dS rather than dA because I still want to think
of dA as maybe the area in one of the coordinate planes like the one we had in double integrals. You will see later
where this comes in. But conceptually it is very similar. Concretely what this means is I cut my surface into little
pieces. Each of them has area delta S. And, for each piece, I take my vector field, I take my normal vector, I dot
them and I multiply by this surface area and sum all these things together. That is what a double integral means.
In particular, an easy case where you know you can get away without computing anything is, of course, if your
vector field is tangent to the surface because then you know that there is no flux. Flux is going to be zero because
nothing passes through the surface. Otherwise, we have to figure out how to compute these things. That is what
we are going to learn now. Well, maybe I should box this formula. I have noticed that some of you seem to like it
when I box the important formulas. (APPLAUSE) By the way, a piece of notation before I move on, sometimes you
will also see the notation vector dS. What is vector dS? Vector dS is this guy n dS put together. Vector dS is a
vector which points perpendicular to the surface and whose length corresponds to the surface element. And the
reason for having this shortcut notation, well, it is not only laziness like saving one n, but it is because this guy is
very often easier to compute than it is to set up n and dS separately. Actually, if you remember in the plane, we
have seen that vector n little ds can be written directly as dy, - dx. That was easier than finding n and ds
separately. And here the same is going to be true in many cases. Well, any questions before we do examples?
No. OK. Let's do examples. The first example for today is we are going to look at the flux of vector field xi yj xk
through the sphere of radius a -- -- centered at the origin. What does the picture look like? We have a sphere of
radius a. I have my vector field. Well, , see, that is a vector field that is equal to the vector from the origin to the
point where I am, so it is pointing radially away from the origin. My vector field is really sticking out everywhere
away from the origin. Now I have to find the normal vector to the sphere if I want to set up double integral over the
sphere of F dot vector ds, or if you want F dot n dS. What does the normal vector to the sphere look like? Well, it
depends, of course, whether I choose it pointing out or in. Let's say I am choosing it pointing out then it will be
sticking straight out of a sphere as well. Hopefully, you can see that if I take a normal vector to the sphere it is
actually pointing radially out away from the origin. In fact, our vector field and our normal vector are parallel to
each other. Let's think a bit more about what a normal vector looks like. I said it is sticking straight out. It is
proportional to this vector field. Maybe I should start by writing because that is the vector that goes from the origin
to my point so it points radially away from the origin. Now there is a small problem with that. It is not a unit vector.
So what is its length? Well, its length is square root of x^2 y^2 z^2. But, if I am on the sphere, then that length is
just equal to a because distance from the origin is a. In fact, I get my normal vector by scaling this guy down by a
factor of a. And let me write it down just in case you are still unsure. This is unit because square root of x^2 y^2
z^2 is equal to a on the sphere. OK. Any questions about this? No. It looks OK? I see a lot of blank faces. That
physics test must have been hard. Yes? I could have put a rho but I want to emphasize the fact that here it is
going to be a constant. I mean rho has this connotation of being a variable that I will need to then maybe integrate
over or do something with. Yes, it would be correct to put rho but I then later will want to replace it by its actual
value which is a number. And the number is a. It is not going to actually change from point to point. For example, if
this was the unit sphere then I would just put x, y, z. I wouldn't divide by anything. Now let's figure out F dot n.
Let's do things one at a time. Well, F and n are parallel to each other. F dot n, the normal component of F, is
actually equal to the length of F. Well, times the length of n if you want, but that is going to be a one since F and n
are parallel to each other. And what is the magnitude of F if I am on the sphere? Well, the magnitude of F in
general is square root of x^2 y^2 z^2 on the sphere that is going be a. The other way to do it, if you don't want to
think geometrically like that, is to just to do the dot product x, y, z doted with x over a, y over a, z over a. You will
be x^2 y^2 z^2 divided by a. That will simplify to a because we are on the sphere. See, we are already using here
the relation between x, y and z. We are not letting x, y and z be completely arbitrary. But the slogan is everything
happens on the surface where we are doing the integral. We are not looking at anything inside or outside. We are
just on the surface. Now what do I do with that? Well, I have turned my integral into the double integral of a dS.
And a is just a constant, so I am very lucky here. I can just say this will be a times the double integral of dS. And,
of course, some day I will have to learn how to tackle that beast, but for now I don't actually need to because the
double integral of dS just means I am summing the area of each little piece of the sphere. I am just going to get
the total area of the sphere which I know to be 4pi a2. This guy here is going to be the area of S. I know that to be
4pi a^2. So I will get 4pi a^3. That one was relatively painless. That was too easy. Let's do a second example with
the same sphere. But now my vector field is going to be just z times k. Well, let me give it a different name. Let me
call it H instead of f or something like that just so that it is not called F anymore. Well, the initial part of the setup is
still the same. The normal vector is still the same. What changes is, of course, my vector field is no longer sticking
straight out so I cannot use this easy geometric argument. It looks like I will have to compute F dot n and then
figure out how to integrate that with dS. Let's do that. We still have that n is /a. That tells us that H dot n will be dot
/ a. It looks like I will be left with z^2 over a. H dot n is z^2 over a. The double integral for flux now becomes double
integral on the sphere of z^2 over a dS. Well, we can take out one over a, that is fine, but it looks like we will have
to integrate z^2 on the surface of the sphere. How do we do that? Well, we have to figure out what is dS in terms
of our favorite set of two variables that we will use to integrate. Now, what is the best way to figure out where you
are on the sphere? Well, you could try to use maybe theta and z. If you know how high you are and where you are
around, in principle you know where you are on the sphere. But since spherical coordinates we have actually



around, in principle you know where you are on the sphere. But since spherical coordinates we have actually
learned about something much more interesting, namely spherical coordinates. It looks like longitude / latitude is
the way to go when trying to figure out where you are on a sphere. We are going to use phi and theta. And, of
course, we have to figure out how to express dS in terms of d phi and d theta. Well, if you were paying really,
really close attention last time, you will notice that we have actually already done that. Last time we saw that if I
have a sphere of radius a and I take a little piece of it that corresponds to small changes in phi and theta then we
said that -- Well, we argued that this side here, the one that is going east-west was a piece of the circle that has a
radius a sin phi because that is r, so that side is a sin phi delta theta. And the side that goes north-south is a piece
of the circle of radius a corresponding to angle delta phi, so it is a delta phi. And so, just to get to the answer, we
got dS equals a^2 sin phi d phi d theta. When we set up a surface integral on the surface of a sphere, most likely
we will be using phi and theta as our two variables of integration and dS will become this. Now, it is OK to think of
them as spherical coordinates, but I would like to encourage you not to think of them as spherical coordinates.
Spherical coordinates are a way of describing points in space in terms of three variables. Here it is more like we
are parameterizing the sphere. We are finding a parametric equation for the sphere using two variables phi and
theta which happen to be part of the spherical coordinate system. But, see, there is no rho involved in here. I am
not using any rho ever, and I am not going to in this calculation. I have two variable phi and theta. That is it. It is
basically in the same way as when you parameterize a line integral in the circle, we use theta as the parameter
variable and never think about r. That being said, well, we are going to use phi and theta. We know what dS is. We
still need to figure out what z is. There we want to think a tiny bit about spherical coordinates again. And we will
know that z is just a cos phi. In case you don't quite see it, let me draw a diagram. Phi is the angle down from the
positive z axes, this distance is a, so this distance here is a cos phi. Now I have everything I need to compute my
double integral. z^2 over a dS will become a double integral. z^2 becomes a^2 cos^2 phi over a times, ds
becomes, a^2 sin phi d phi d theta. Now I need to set up bounds. Well, what are the bounds? Phi goes all the way
from zero to pi because we go all the way from the north pole to the south pole, and theta goes from zero to 2pi.
And, of course, I can get rid of some a's in there and take them out. Let's look at what number we get. First of all,
we can take out all those a's and get a^3. Second, in the inner integral, we are integrating cos^2 phi sin phi d phi. I
claim that integrates to cos3 up to some factor, and that factor should be negative one-third. If you look at cos3
phi and you take its derivative, you will get that guy with a negative three in front between zero and pi. And, while
integrating over theta, we will just multiply things by 2pi. Let me add the 2pi in front. Now, if I evaluate this guy
between zero and pi, well, at pi cos^3 is negative one, at zero it is one, I will get two-thirds out of this. I end up with
four-thirds pi a^3. Sorry I didn't write very much because I am trying to save blackboard space. Yes? That is a
very natural question. That looks a lot like somebody we know, like the volume of a sphere. And ultimately it will
be. Wait until next class when we talk about the divergence theorem. I mean the question was is this related to the
volume of a sphere, and ultimately it is, but for now it is just some coincidence. Yes? The question is there is a
way to do it M dx plus N dy plus stuff like that? The answer is unfortunately no because it is not a line integral. It is
a surface integral, so we need to have to variables in there. In a way you would end up with things like some dx dy
maybe and so on. I mean it is not practical to do it directly that way because you would have then to compute
Jacobians to switch from dx dy to something else. We are going to see various ways of computing it.
Unfortunately, it is not quite as simple as with line integrals. But it is not much harder. It is the same spirit. We just
use two variables and set up everything in terms of these two variables. Any other questions? No. OK. By the way,
just some food for thought. Never mind. Conclusion of looking at these two examples is that sometimes we can
use geometric. The first example, we didn't actually have to compute an integral. But most of the time we need to
learn how to set up double integrals. Use geometry or you need to set up for double integral of a surface. And so
we are going to learn how to do that in general. As I said, we need to have two parameters on the surface and
express everything in terms of these. Let's look at various examples. We are going to see various situations where
we can do things. Well, let's start with an easy one. Let's call that number zero. Say that my surface S is a
horizontal plane, say z equals a. When I say a horizontal plane, it doesn't have to be the entire horizontal plane. It
could be a small piece of it. It could even be, to trick you, maybe an ellipse in there or a triangle in there or
something like that. What you have to recognize is my surface is a piece of just a flat plane, so I shouldn't worry
too much about what part of a plane it is. Well, it will become important when I set up bounds for integration. But,
when it comes to looking for the normal vector, be rest assured that the normal vector to a horizontal plane is just
vertical. It is going to be either k or negative k depending on whether I have chosen to orient it pointing up or
down. And which one I choose might depend on what I am going to try to do. The normal vector is just sticking
straight up or straight down. Now, what about dS? Well, it is just going to be the area element in a horizontal
plane. It just looks like it should be dx dy. I mean if I am moving on a horizontal plane, to know where I am, I
should know x and y. So dS will be dx dy. If I play the game that way, I have my vector field F. I do F dot n. That
just gives me the z component which might involve x, y and z. x and y I am very happy with. They will stay as my
variables. Whenever I see z, well, I want to get rid of it. That is easy because z is just equal to a. I just plug that
value and I am left with only x and y, and I am integrating that dx dy. It is actually ending up being just a usual
double integral in x, y coordinates. And, of course, once it is set up anything is fair game. I might want to switch to
polar coordinates or something like that. Or, I can set it up dx dy or dy dx. All the usual stuff applies. But, for the
initial setup, we are just going to use these and express everything in terms of x and y. A small variation on that.
Let's say that we take vertical planes that are parallel to maybe the blackboard plane, so parallel to the yz plane.
That might be something like x equals some constant. Well, what would I do then? It could be pretty much the
same. The normal vector for this guy would be sticking straight out towards me or away from me. Let's say I am
having it come to the front. The normal vector would be plus/minus i. And the variables that I would be using, to
find out my position on this guy, would be y and z. In terms of those, the surface element is just dy dz. Similarly for
planes parallel to the xz plane. You can figure that one out. These are somehow the easiest ones, because those
we already know how to compute without too much trouble. What if it is a more complicated plane? We will come



we already know how to compute without too much trouble. What if it is a more complicated plane? We will come
back to that next time. Let's explore some other situations first. Number one on the list. Let's say that I gave you a
sphere of radius a centered at the origin, or maybe just half of that sphere or some portion of it. Well, we have
already seen how to do things. Namely, we will be saying the normal vector is x, y, z over a, plus or minus
depending on whether we want it pointing in or out. And dS will be a^2 sin phi d phi d theta. In fact, we will express
everything in terms of phi and theta. If I wanted to I could tell you what the formulas are for x, y, z in terms of phi
and theta. You know them. But it is actually better to wait a little bit. It is better to do F dot n, because F is also
going to have a bunch of x's, y's and z's. And if there is any kind of symmetry to the problem then you might end
up with things like x^2 y^2 z^2 or things that have more symmetry that are easier to express in terms of phi and
theta. The advice would be first do the dot product with F, and then see what you get and then turn it into phi and
theta. That is one we have seen. Let's say that I have -- It is a close cousin. Let's say I have a cylinder of radius a
centered on the z-axis. What does that look like? And, again, when I say cylinder, it could be a piece of cylinder.
First of all, what does the normal vector to a cylinder look like? Well, it is sticking straight out, but sticking straight
out in a slightly different way from what happens with a sphere. See, the sides of a cylinder are vertical. If you
imagine that you have this big cylindrical type in front of you, hopefully you can see that a normal vector is going to
always be horizontal. It is sticking straight out in the horizontal directions. It doesn't have any z component. I claim
the normal vector for the cylinder, if you have a point here at (x, y, z), it would be pointing straight out away from
the central axis. My normal vector, well, if I am taking it two points outwards, will be going straight away from the
central axis. If I look at it from above, maybe it is easier if I look at it from above, look at x, y, then my cylinder
looks like a circle and the normal vector just points straight out. It is the same situation as when we had a circle in
the 2D case. The normal vector for that is just going to be x, y and 0 in the z component. Well, plus/minus,
depending on whether you want it sticking in or out. We said in our cylinder normal vector is plus or minus x, y,
zero over a. What about the surface element? Before we ask that, maybe we should first figure out what
coordinates are we going to use to locate ourselves in a cylinder. Well, yes, we probably want to use part of a
cylindrical coordinate, except for, well, we don't want r because r doesn't change, it is not a variable here. Indeed,
you probably want to use z to tell how high you are and theta to tell you where you are around. dS should be in
terms of dz d theta. Now, what is the constant? Well, let's look at a small piece of our cylinder corresponding to a
small angle delta theta and a small height delta z. Well, the height, as I said, is going to be delta z. What about the
width? It is going to be a piece of a circle of radius a corresponding to the angle delta theta, so this side will be a
delta theta. Delta S is a delta theta delta z. DS is just a dz d theta or d theta dz. It doesn't matter which way you do
it. And so when we set up the flux integral, we will take first the dot product of f with this normal vector. Then we
will stick in this dS. And then, of course, we will get rid of any x and y that are left by expressing them in terms of
theta. Maybe x becomes a cos theta, y becomes a sin theta. These various formulas, you should try to remember
them because they are really useful, for the sphere, for the cylinder. And, hopefully, those for the planes you kind
of know already intuitively. What about marginals or faces? Not everything in life is made out of cylinders and
spheres. I mean it is a good try. Let's look at a marginal kind of surface. Let's say I give you a graph of a function z
equals f of x, y. This guy has nothing to do with the integrand. It is not what we are integrating. We are just
integrating a vector field that has nothing to do with that. This is how I want to describe the surface on which I will
be integrating. My surface is given by z as a function of x, y. Well, I would need to tell you what n is and what dS
is. That is going to be slightly annoying. I mean, I don't want to tell them separately because you see they are
pretty hard. Instead, I am going to tell you that in this case, well, let's see. What variables do we want? I am going
to tell you a formula for n dS. What variables do we want to express this in terms of? Well, most likely x and y
because we know how to express z in terms of x and y. This is an invitation to get rid of any z that might be left
and set everything up in terms of dx dy. The formula that we are going to see, I think we are going to see the
details of why it works tomorrow, is that you can take negative partial f partial x, negative partial f partial y, one, dx
dy. Plus/minus depending on which way you want it to go. If you really want to know what dS is, well, dS is the
magnitude of this vector times dx dy. There will be a square root and some squares and some stuff. What is the
normal vector? Well, you take this vector and you scale it down to unit length. Just to emphasize it, this guy here is
not n and this guy here is not dS. Each of them is more complicated than that, but the combination somehow
simplifies nicely. And that is good news for us. Now, concretely, one way you can think about it is this tells you how
to reduce things to an integral of x and y. And, of course, you will have to figure out what are the bounds on x and
y. That means you will need to know what does the shadow of your surface look like in the x, y plane. To set up
bounds on whatever you will get dx dy, well, of course you can switch to dy dx or anything you would like, but you
will need to look at the shadow of S in the x y plane. But only do that after you gotten rid of all the z. When you no
longer have z then you can figure out what the bounds are for x and y. Any questions about that? Yes? For the
cylinder. OK. Let me re-explain quickly how I got a normal vector for the cylinder. If you know what a cylinder looks
like, you probably can see that the normal vector sticks straight out of it horizontally. That means the z component
of n is going to be zero. And then the x, y components you get by looking at it from above. One last thing I want to
say. What about the geometric interpretation and how to prove it? Well, if your vector field F is a velocity field then
the flux is the amount of matter that crosses the surface that passes through S per unit time. And the way that you
would prove it would be similar to the picture that I drew when we did it in the plane. Namely, you would consider a
small element of a surface delta S. And you would try to figure out what is the stuff that flows through it in a
second. Well, it is the stuff that lives in a small box whose base is that piece of surface and whose other side is
given by the vector field. And then the volume of that is given by base times height, and the height is F dot n. It is
the same argument as what we saw in the plane. OK. Next time we will see more formulas. We will first see how to
prove this, more ways to do it, more examples. And then we will get to the divergence theorem.


