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18.02 Multivariable Calculus, Fall 2007 
Transcript – Lecture 15 

OK. Let's start. To start with, I would like to welcome the parents who are here to 
see how their kids are being tortured by us evil MIT Profs. And, I guess, well, a good 
example of how we torture your kids is we have exams all the time. One of them is 
on Tuesday. I hope still that you will have time to spend with them during the 
weekend. Tell them to work hard on Monday and enjoy the weekend before it. 
Anyway, on Tuesday there is a second exam. And it is in Walker or here, depending 
on your last name, same as last time. There are still two practice exams. We are 
going to go over one of them today. The other one you will go over in recitation on 
Monday. 

There used to be spare copies. There still are a few spare copies of practice 2A. 
Otherwise, you can find it on the Web. Let me start by basically listing the main 
things we have learned over the past three weeks or so. And I will add a few 
complements of information about that because there are a few small details that I 
didn't quite clarify and that I should probably make a bit clearer, especially what 
happened at the very end of yesterday's class. 

Here is a list of things that should be on your review sheet for the exam. The first 
thing we learned about, the main topic of this unit is about functions of several 
variables. We have learned how to think of functions of two or three variables in 
terms of plotting them. In particular, well, not only the graph but also the contour 
plot and how to read a contour plot. And we have learned how to study variations of 
these functions using partial derivatives. 

Remember, we have defined the partial of f with respect to some variable, say, x to 
be the rate of change with respect to x when we hold all the other variables 
constant. If you have a function of x and y, this symbol means you differentiate with 
respect to x treating y as a constant. And we have learned how to package partial 
derivatives into a vector,the gradient vector. For example, if we have a function of 
three variables, the vector whose components are the partial derivatives. And we 
have seen how to use the gradient vector or the partial derivatives to derive various 
things such as approximation formulas. 

The change in f, when we change x, y, z slightly, is approximately equal to, well, 
there are several terms. And I can rewrite this in vector form as the gradient dot 
product the amount by which the position vector has changed. Basically, what causes 
f to change is that I am changing x, y and z by small amounts and how sensitive f is 
to each variable is precisely what the partial derivatives measure. And, in particular, 
this approximation is called the tangent plane approximation because it tells us, in 
fact, it amounts to identifying the graph of the function with its tangent plane. 

It means that we assume that the function depends more or less linearly on x, y and 
z. And, if we set these things equal, what we get is actually, we are replacing the 
function by its linear approximation. We are replacing the graph by its tangent plane. 
Except, of course, we haven't see the graph of a function of three variables because 



that would live in 4-dimensional space. So, when we think of a graph, really, it is a 
function of two variables. 

That also tells us how to find tangent planes to level surfaces. Recall that the tangent 
plane to a surface, given by the equation f of x, y, z equals z, at a given point can be 
found by looking first for its normal vector. And we know that the normal vector is 
actually, well, one normal vector is given by the gradient of a function because we 
know that the gradient is actually pointing perpendicularly to the level sets towards 
higher values of a function. And it gives us the direction of fastest increase of a 
function. OK. 

Any questions about these topics? No. OK. Let me add, actually, a cultural note to 
what we have seen so far about partial derivatives and how to use them, which is 
maybe something I should have mentioned a couple of weeks ago. Why do we like 
partial derivatives? Well, one obvious reason is we can do all these things. But 
another reason is that, really, you need partial derivatives to do physics and to 
understand much of the world that is around you because a lot of things actually are 
governed by what is called partial differentiation equations. 

So if you want a cultural remark about what this is good for. A partial differential 
equation is an equation that involves the partial derivatives of a function. So you 
have some function that is unknown that depends on a bunch of variables. And a 
partial differential equation is some relation between its partial derivatives. Let me 
see. These are equations involving the partial derivatives --

-- of an unknown function. Let me give you an example to see how that works. For 
example, the heat equation is one example of a partial differential equation. It is the 
equation -- Well, let me write for you the space version of it. It is the equation 
partial f over partial t equals some constant times the sum of the second partials 
with respect to x, y and z. So this is an equation where we are trying to solve for a 
function f that depends, actually, on four variables, x, y, z, t. 

And what should you have in mind? Well, this equation governs temperature. If you 
think that f of x, y, z, t will be the temperature at a point in space at position x, y, z 
and at time t, then this tells you how temperature changes over time. It tells you 
that at any given point, the rate of change of temperature over time is given by this 
complicated expression in the partial derivatives in terms of the space coordinates x, 
y, z. 

If you know, for example, the initial distribution of temperature in this room, and if 
you assume that nothing is generating heat or taking heat away, so if you don't have 
any air conditioning or heating going on, then it will tell you how the temperature will 
change over time and eventually stabilize to some final value. Yes? Why do we take 
the partial derivative twice? Well, that is a question, I would say, for a physics 
person. But in a few weeks we will actually see a derivation of where this equation 
comes from and try to justify it. But, really, that is something you will see in a 
physics class. The reason for that is basically physics of how heat is transported 
between particles in fluid, or actually any medium. 

This constant k actually is called the heat conductivity. It tells you how well the heat 
flows through the material that you are looking at. Anyway, I am giving it to you just 
to show you an example of a real life problem where, in fact, you have to solve one 
of these things. Now, how to solve partial differential equations is not a topic for this 



class. It is not even a topic for 18.03 which is called Differential Equations, without 
partial, which means there actually you will learn tools to study and solve these 
equations but when there is only one variable involved. 

And you will see it is already quite hard. And, if you want more on that one, we have 
many fine classes about partial differential equations. But one thing at a time. I 
wanted to point out to you that very often functions that you see in real life satisfy 
many nice relations between the partial derivatives. That was in case you were 
wondering why on the syllabus for today it said partial differential equations. Now we 
have officially covered the topic. That is basically all we need to know about it. But 
we will come back to that a bit later. You will see. OK. If there are no further 
questions, let me continue and go back to my list of topics. Oh, sorry. I should have 
written down that this equation is solved by temperature for point x, y, z at time t. 

OK. And there are, actually, many other interesting partial differential equations you 
will maybe sometimes learn about the wave equation that governs how waves 
propagate in space, about the diffusion equation, when you have maybe a mixture of 
two fluids, how they somehow mix over time and so on. Basically, to every problem 
you might want to consider there is a partial differential equation to solve. OK. 
Anyway. Sorry. Back to my list of topics. One important application we have seen of 
partial derivatives is to try to optimize things, try to solve minimum/maximum 
problems. 

Remember that we have introduced the notion of critical points of a function. A 
critical point is when all the partial derivatives are zero. And then there are various 
kinds of critical points. There is maxima and there is minimum, but there is also 
saddle points. And we have seen a method using second derivatives -- -- to decide 
which kind of critical point we have. I should say that is for a function of two 
variables to try to decide whether a given critical point is a minimum, a maximum or 
a saddle point. 

And we have also seen that actually that is not enough to find the minimum of a 
maximum of a function because the minimum of a maximum could occur on the 
boundary. Just to give you a small reminder, when you have a function of one 
variables, if you are trying to find the minimum and the maximum of a function 
whose graph looks like this, well, you are going to tell me, quite obviously, that the 
maximum is this point up here. 

And that is a point where the first derivative is zero. That is a critical point. And we 
used the second derivative to see that this critical point is a local maximum. But 
then, when we are looking for the minimum of a function, well, it is not at a critical 
point. It is actually here at the boundary of the domain, you know, the range of 
values that we are going to consider. Here the minimum is at the boundary. 

And the maximum is at a critical point. Similarly, when you have a function of 
several variables, say of two variables, for example, then the minimum and the 
maximum will be achieved either at a critical point. And then we can use these 
methods to find where they are. Or, somewhere on the boundary of a set of values 
that are allowed. It could be that we actually achieve a minimum by making x and y 
as small as possible. 

Maybe letting them go to zero if they had to be positive or maybe by making them 
go to infinity. So, we have to keep our minds open and look at various possibilities. 



We are going to do a problem like that. We are going to go over a practice problem 
from the practice test to clarify this. Another important cultural application of 
minimum/maximum problems in two variables that we have seen in class is the least 
squared method to find the best fit line, or the best fit anything, really, to find when 
you have a set of data points what is the best linear approximately for these data 
points. 

And here I have some good news for you. While you should definitely know what this 
is about, it will not be on the test. [APPLAUSE] That doesn't mean that you should 
forget everything we have seen about it, OK? Now what is next on my list of topics? 
We have seen differentials. Remember the differential of f, by definition, would be 
this kind of quantity. At first it looks just like a new way to package partial 
derivatives together into some new kind of object. 

Now, what is this good for? Well, it is a good way to remember approximation 
formulas. It is a good way to also study how variations in x, y, z relate to variations 
in f. In particular, we can divide this by variations, actually, by dx or by dy or by dz 
in any situation that we want, or by d of some other variable to get chain rules. The 
chain rule says, for example, there are many situations. But, for example, if x, y and 
z depend on some other variable, say of variables maybe even u and v, then that 
means that f becomes a function of u and v. 

And then we can ask ourselves, how sensitive is f to a value of u? Well, we can 
answer that. The chain rule is something like this. And let me explain to you again 
where this comes from. Basically, what this quantity means is if we change u and 
keep v constant, what happens to the value of f? Well, why would the value of f 
change in the first place when f is just a function of x, y, z and not directly of you? 
Well, it changes because x, y and z depend on u. First we have to figure out how 
quickly x, y and z change when we change u. Well, how quickly they do that is 
precisely partial x over partial u, partial y over partial u, partial z over partial u. 

These are the rates of change of x, y, z when we change u. And now, when we 
change x, y and z, that causes f to change. How much does f change? Well, partial f 
over partial x tells us how quickly f changes if I just change x. I get this. That is the 
change in f caused just by the fact that x changes when u changes. But then y also 
changes. y changes at this rate. And that causes f to change at that rate. 

And z changes as well, and that causes f to change at that rate. And the effects add 
up together. Does that make sense? OK. And so, in particular, we can use the chain 
rule to do changes of variables. If we have, say, a function in terms of polar 
coordinates on theta and we like to switch it to rectangular coordinates x and y then 
we can use chain rules to relate the partial derivatives. And finally, last but not least, 
we have seen how to deal with non-independent variables. 

When our variables say x, y, z related by some equation. One way we can deal with 
this is to solve for one of the variables and go back to two independent variables, but 
we cannot always do that. Of course, on the exam, you can be sure that I will make 
sure that you cannot solve for a variable you want to remove because that would be 
too easy. Then when we have to look at all of them, we will have to take into 
account this relation, we have seen two useful methods. 

One of them is to find the minimum of a maximum of a function when the variables 
are not independent, and that is the method of Lagrange multipliers. Remember, to 



find the minimum or the maximum of the function f, subject to the constraint g 
equals constant, well, we write down equations that say that the gradient of f is 
actually proportional to the gradient of g. There is a new variable here, lambda, the 
multiplier. 

And so, for example, well, I guess here I had functions of three variables, so this 
becomes three equations. f sub x equals lambda g sub x, f sub y equals lambda g 
sub y, and f sub z equals lambda g sub z. And, when we plug in the formulas for f 
and g, well, we are left with three equations involving the four variables, x, y, z and 
lambda. What is wrong? Well, we don't have actually four independent variables. 

We also have this relation, whatever the constraint was relating x, y and z together. 
Then we can try to solve this. And, depending on the situation, it is sometimes easy. 
And it sometimes it is very hard or even impossible. But on the test, I haven't 
decided yet, but it could well be that the problem about Lagrange multipliers just 
asks you to write the equations and not to solve them. [APPLAUSE] 

Well, I don't know yet. I am not promising anything. But, before you start solving, 
check whether the problem asks you to solve them or not. If it doesn't then probably 
you shouldn't. Another topic that we solved just yesterday is constrained partial 
derivatives. And I guess I have to re-explain a little bit because my guess is that 
things were not extremely clear at the end of class yesterday. Now we are in the 
same situation. We have a function, let's say, f of x, y, z where variables x, y and z 
are not independent but are constrained by some relation of this form. 

Some quantity involving x, y and z is equal to maybe zero or some other constant. 
And then, what we want to know, is what is the rate of change of f with respect to 
one of the variables, say, x, y or z when I keep the others constant? Well, I cannot 
keep all the other constant because that would not be compatible with this condition. 
I mean that would be the usual or so-called formal partial derivative of f ignoring the 
constraint. To take this into account means that if we vary one variable while 
keeping another one fixed then the third one, since it depends on them, must also 
change somehow. And we must take that into account. Let's say, for example, we 
want to find --

I am going to do a different example from yesterday. So, if you really didn't like that 
one, you don't have to see it again. Let's say that we want to find the partial 
derivative of f with respect to z keeping y constant. What does that mean? That 
means y is constant, z varies and x somehow is mysteriously a function of y and z 
for this equation. And then, of course because it depends on y, that means x will 
vary. Sorry, depends on y and z and z varies. Now we are asking ourselves what is 
the rate of change of f with respect to z in this situation? 

And so we have two methods to do that. Let me start with the one with differentials 
that hopefully you kind of understood yesterday, but if not here is a second chance. 
Using differentials means that we will try to express df in terms of dz in this 
particular situation. What do we know about df in general? Well, we know that df is f 
sub x dx plus f sub y dy plus f sub z dz. That is the general statement. But, of 
course, we are in a special case. We are in a special case where first y is constant. y 
is constant means that we can set dy to be zero. 

This goes away and becomes zero. The second thing is actually we don't care about 
x. We would like to get rid of x because it is this dependent variable. What we really 



want to do is express df only in terms of dz. What we need is to relate dx with dz. 
Well, to do that, we need to look at how the variables are related so we need to look 
at the constraint g. Well, how do we do that? We look at the differential g. So dg is g 
sub x dx plus g sub y dy plus g sub z dz. And that is zero because we are setting g to 
always stay constant. 

So, g doesn't change. If g doesn't change then we have a relation between dx, dy 
and dz. Well, in fact, we say we are going to look only at the case where y is 
constant. y doesn't change and this becomes zero. Well, now we have a relation 
between dx and dz. We know how x depends on z. And when we know how x 
depends on z, we can plug that into here and get how f depends on z. Let's do that. 

Again, saying that g cannot change and keeping y constant tells us g sub x dx plus g 
sub z dz is zero and we would like to solve for dx in terms of dz. That tells us dx 
should be minus g sub z dz divided by g sub x. If you want, this is the rate of change 
of x with respect to z when we keep y constant. In our new terminology this is partial 
x over partial z with y held constant. This is the rate of change of x with respect to z. 
Now, when we know that, we are going to plug that into this equation. And that will 
tell us that df is f sub x times dx. Well, what is dx? dx is now minus g sub z over g 
sub x dz plus f sub z dz. 

So that will be minus fx g sub z over g sub x plus f sub z times dz. And so this 
coefficient here is the rate of change of f with respect to z in the situation we are 
considering. This quantity is what we call partial f over partial z with y held constant. 
That is what we wanted to find. Now, let's see another way to do the same 
calculation and then you can choose which one you prefer. The other method is using 
the chain rule. 

We use the chain rule to understand how f depends on z when y is held constant. Let 
me first try the chain rule brutally and then we will try to analyze what is going on. 
You can just use the version that I have up there as a template to see what is going 
on, but I am going to explain it more carefully again. That is the most mechanical 
and mindless way of writing down the chain rule. I am just saying here that I am 
varying z, keeping y constant, and I want to know how f changes. Well, f might 
change because x might change, y might change and z might change. 

Now, how quickly does x change? Well, the rate of change of x in this situation is 
partial x, partial z with y held constant. If I change x at this rate then f will change at 
that rate. Now, y might change, so the rate of change of y would be the rate of 
change of y with respect to z holding y constant. Wait a second. If y is held constant 
then y doesn't change. So, actually, this guy is zero and you didn't really have to 
write that term. But I wrote it just to be systematic. If y had been somehow able to 
change at a certain rate then that would have caused f to change at that rate. And, 
of course, if y is held constant then nothing happens here. Finally, while z is 
changing at a certain rate, this rate is this one and that causes f to change at that 
rate. And then we add the effects together. 

See, it is nothing but the good-old chain rule. Just I have put these extra subscripts 
to tell us what is held constant and what isn't. Now, of course we can simplify it a 
little bit more. Because, here, how quickly does z change if I am changing z? Well, 
the rate of change of z, with respect to itself, is just one. In fact, the really 
mysterious part of this is the one here, which is the rate of change of x with respect 
to z. 



And, to find that, we have to understand the constraint. How can we find the rate of 
change of x with respect to z? Well, we could use differentials, like we did here, but 
we can also keep using the chain rule. How can I do that? Well, I can just look at 
how g would change with respect to z when y is held constant. I just do the same 
calculation with g instead of f. But, before I do it, let's ask ourselves first what is this 
equal to. Well, if g is held constant then, when we vary z keeping y constant and 
changing x, well, g still doesn't change. It is held constant. 

In fact, that should be zero. But, if we just say that, we are not going to get to that. 
Let's see how we can compute that using the chain rule. Well, the chain rule tells us 
g changes because x, y and z change. How does it change because of x? Well, partial 
g over partial x times the rate of change of x. How does it change because of y? 
Well, partial g over partial y times the rate of change of y. But, of course, if you are 
smarter than me then you don't need to actually write this one because y is held 
constant. And then there is the rate of change because z changes. 

And how quickly z changes here, of course, is one. Out of this you get, well, I am 
tired of writing partial g over partial x. We can just write g sub x times partial x over 
partial z y constant plus g sub z. And now we found how x depends on z. Partial x 
over partial z with y held constant is negative g sub z over g sub x. Now we plug that 
into that and we get our answer. It goes all the way up here. And then we get the 
answer. I am not going to, well, I guess I can write it again. 

There was partial f over partial x times this guy, minus g sub z over g sub x, plus 
partial f over partial z. And you can observe that this is exactly the same formula 
that we had over here. In fact, let's compare this to make it side by side. I claim we 
did exactly the same thing, just with different notations. If you take the differential 
of f and you divide it by dz in this situation where y is held constant and so on, you 
get exactly this chain rule up there. That chain rule up there is this guy, df, divided 
by dz with y held constant. And the term involving dy was replaced by zero on both 
sides because we knew, actually, that y is held constant. 

Now, the real difficulty in both cases comes from dx. And what we do about dx is we 
use the constant. Here we use it by writing dg equals zero. Here we write the chain 
rule for g, which is the same thing, just divided by dz with y held constant. This 
formula or that formula are the same, just divided by dz with y held constant. And 
then, in both cases, we used that to solve for dx. And then we plugged into the 
formula of df to express df over dz, or partial f, partial z with y held constant. So, the 
two methods are pretty much the same. Quick poll. Who prefers this one? Who 
prefers that one? OK. Majority vote seems to be for differentials, but it doesn't mean 
that it is better. Both are fine. You can use whichever one you want. 

But you should give both a try. OK. Any questions? Yes? Yes. Thank you. I forgot to 
mention it. Where did that go? I think I erased that part. We need to know -- --
directional derivatives. Pretty much the only thing to remember about them is that df 
over ds, in the direction of some unit vector u, is just the gradient f dot product with 
u. That is pretty much all we know about them. Any other topics that I forgot to list? 
No. Yes? 

Can I erase three boards at a time? No, I would need three hands to do that. I think 
what we should do now is look quickly at the practice test. I mean, given the time, 
you will mostly have to think about it yourselves. Hopefully you have a copy of the 



practice exam. The first problem is a simple problem. Find the gradient. Find an 
approximation formula. Hopefully you know how to do that. The second problem is 
one about writing a contour plot. And so, before I let you go for the weekend, I want 
to make sure that you actually know how to read a contour plot. 

One thing I should mention is this problem asks you to estimate partial derivatives 
by writing a contour plot. We have not done that, so that will not actually be on the 
test. We will be doing qualitative questions like what is the sine of a partial 
derivative. Is it zero, less than zero or more than zero? You don't need to bring a 
ruler to estimate partial derivatives the way that this problem asks you to. 
[APPLAUSE] 

Let's look at problem 2B. Problem 2B is asking you to find the point at which h 
equals 2200, partial h over partial x equals zero and partial h over partial y is less 
than zero. Let's try and see what is going on here. A point where f equals 2200, well, 
that should be probably on the level curve that says 2200. We can actually zoom in. 
Here is the level 2200. Now I want partial h over partial x to be zero. 

That means if I change x, keeping y constant, the value of h doesn't change. Which 
points on the level curve satisfy that property? It is the top and the bottom. If you 
are here, for example, and you move in the x direction, well, you see, as you get to 
there from the left, the height first increases and then decreases. It goes for a 
maximum at that point. So, at that point, the partial derivative is zero with respect 
to x. And the same here. Now, let's find partial h over partial y less than zero. That 
means if we go north we should go down. Well, which one is it, top or bottom? Top. 
Yes. 

Here, if you go north, then you go from 2200 down to 2100. This is where the point 
is. Now, the problem here was also asking you to estimate partial h over partial y. 
And if you were curious how you would do that, well, you would try to figure out how 
long it takes before you reach the next level curve. To go from here to here, to go 
from Q to this new point, say Q prime, the change in y, well, you would have to read 
the scale, which was down here, would be about something like 300. What is the 
change in height when you go from Q to Q prime? Well, you go down from 2200 to 
2100. That is actually minus 100 exactly. 

OK? And so delta h over delta y is about minus one-third, well, minus 100 over 300 
which is minus one-third. And that is an approximation for partial derivative. So, that 
is how you would do it. Now, let me go back to other things. If you look at this 
practice exam, basically there is a bit of everything and it is kind of fairly 
representative of what might happen on Tuesday. There will be a mix of easy 
problems and of harder problems. Expect something about computing gradients, 
approximations, rate of change. Expect a problem about reading a contour plot. 

Expect one about a min/max problem, something about Lagrange multipliers, 
something about the chain rule and something about constrained partial derivatives. 
I mean pretty much all the topics are going to be there. Yes? Yes, in a min/max 
problem, you have to look at the boundaries. Look at how it is done here. OK. Have 
a nice weekend and see you on Tuesday. 


