MIT OpenCourseWare <a href="http://ocw.mit.edu">http://ocw.mit.edu</a>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <a href="http://ocw.mit.edu/terms">http://ocw.mit.edu/terms</a>.

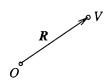
## G. Gravitational Attraction

We use triple integration to calculate the gravitational attraction that a solid body V of mass M exerts on a unit point mass placed at the origin.

If the solid V is also a point mass, then according to Newton's law of gravitation, the force it exerts is given by

(1) 
$$\mathbf{F} = \frac{GM}{|\mathbf{R}|^2} \mathbf{r},$$

where **R** is the position vector from the origin **0** to the point V, and the unit vector  $\mathbf{r} = \mathbf{R}/|\mathbf{R}|$  is its direction.



If however the solid body V is not a point mass, we have to use integration. We concentrate on finding just the  $\mathbf{k}$  component of the gravitational attraction — all our examples will have the solid body V placed symmetrically so that its pull is all in the  $\mathbf{k}$  direction anyway.

To calculate this force, we divide up the solid V into small pieces having volume  $\Delta V$  and mass  $\Delta m$ . If the density function is  $\delta(x,y,z)$ , we have for the piece containing the point (x,y,z)

(2) 
$$\Delta m \approx \delta(x, y, z) \Delta V,$$

Thinking of this small piece as being essentially a point mass at (x, y, z), the force  $\Delta \mathbf{F}$  it exerts on the unit mass at the origin is given by (1), and its  $\mathbf{k}$  component  $\Delta F_z$  is therefore

$$\Delta F_z = G \frac{\Delta m}{|\mathbf{R}|^2} \mathbf{r} \cdot \mathbf{k} ,$$

which in spherical coordinates becomes, using (2), and the picture,

$$\Delta F_z = G \frac{\cos \phi}{\rho^2} \delta \Delta V = G \frac{\delta \Delta V}{\rho^2} \cos \phi .$$

If we sum all the contributions to the force from each of the mass elements  $\Delta m$  and pass to the limit, we get for the **k**-component of the gravitational force

(3) 
$$F_z = G \iiint_V \frac{\cos \phi}{\rho^2} \, \delta \, dV \; .$$

If the integral is in spherical coordinates, then  $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$ , and the integral becomes

(4) 
$$F_z = G \iiint_V \delta \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta .$$

**Example 1.** Find the gravitational attraction of the upper half of a solid sphere of radius a centered at the origin, if its density is given by  $\delta = \sqrt{x^2 + y^2}$ .

**Solution.** Since the solid and its density are symmetric about the z-axis, the force will be in the k-direction, and we can use (3) or (4). Since

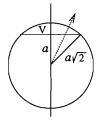
$$\sqrt{x^2 + y^2} = r = \rho \sin \phi ,$$

the integral is

$$F_z = G \int_0^{2\pi} \int_0^{\pi/2} \int_0^a \rho \sin^2 \phi \cos \phi \, d\rho \, d\phi \, d\theta$$

which evaluates easily to  $\pi Ga^2/3$ .

**Example 2.** Let V be the solid spherical cap obtained by slicing a solid sphere of radius  $a\sqrt{2}$  by a plane at a distance a from the center of the sphere. Find the gravitational attraction of V on a unit point mass at the center of the sphere. (Take the density to be 1.)



**Solution.** To take advantage of the symmetry, place the origin at the center of the sphere, and align the axis of the cap along the z-axis (so the flat side of the cap is parallel to the xy-plane).

We use spherical coordinates; the main problem is determining the limits of integration. If we fix  $\phi$  and  $\theta$  and let  $\rho$  vary, we get a ray which enters V at its flat side

$$z = a$$
, or  $\rho \cos \phi = a$ ,

and leaves V on its spherical side,  $\rho = a\sqrt{2}$ . The rays which intersect V in this way are those for which  $0 \le \phi \le \pi/4$ , as one sees from the picture. Thus by (4),

$$F_z = G \int_0^{2\pi} \int_0^{\pi/4} \int_{a/\cos\phi}^{a\sqrt{2}} \sin\phi\cos\phi \,d\rho \,d\phi \,d\theta,$$

which after integrating with respect to  $\rho$  (and  $\theta$ ) becomes

$$\begin{split} &= 2\pi G \, \int_0^{\pi/4} \, a \Big(\sqrt{2} - \frac{1}{\cos\phi}\Big) \sin\phi \cos\phi \, d\phi \\ &= \, 2\pi G a \Big(\frac{3\sqrt{2}}{4} - 1\Big) \ . \end{split}$$

**Remark.** Newton proved that a solid sphere of uniform density and mass M exerts the same force on an external point mass as would a point mass M placed at the center of the sphere. (See Problem 6a).

This does *not* however generalize to other uniform solids of mass M — it is not true that the gravitational force they exert is the same as that of a point mass M at their center of mass. For if this were so, a unit test mass placed on the axis between two equal point masses M and M' ought to be pulled toward the midposition, whereas actually it will be pulled toward the closer of the two masses.

**Exercises: Section 5C**