MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

I. Limits in Iterated Integrals

For most students, the trickiest part of evaluating multiple integrals by iteration is to put in the limits of integration. Fortunately, a fairly uniform procedure is available which works in any coordinate system. You must always begin by sketching the region; in what follows we'll assume you've done this.

1. Double integrals in rectangular coordinates.

Let's illustrate this procedure on the first case that's usually taken up: double integrals in rectangular coordinates. Suppose we want to evaluate over the region R pictured the integral

$$
\iint_{R} f(x, y) d y d x, \quad R=\text { region between } x^{2}+y^{2}=1 \quad \text { and } \quad x+y=1
$$

we are integrating first with respect to y. Then to put in the limits,

1. Hold x fixed, and let y increase (since we are integrating with respect to y). As the point (x, y) moves, it traces out a vertical line.
2. Integrate from the y-value where this vertical line enters the region R, to the y-value where it leaves R.
3. Then let x increase, integrating from the lowest x-value for which the vertical line intersects R, to the highest such x-value.
Carrying out this program for the region R pictured, the vertical line enters R where $y=1-x$, and leaves where $y=\sqrt{1-x^{2}}$.

The vertical lines which intersect R are those between $x=0$ and $x=1$. Thus we get for the limits:

$$
\iint_{R} f(x, y) d y d x=\int_{0}^{1} \int_{1-x}^{\sqrt{1-x^{2}}} f(x, y) d y d x
$$

To calculate the double integral, integrating in the reverse order $\iint_{R} f(x, y) d x d y$,

1. Hold y fixed, let x increase (since we are integrating first with respect to x). This traces out a horizontal line.
2. Integrate from the x-value where the horizontal line enters R to the x-value where it leaves.
3. Choose the y-limits to include all of the horizontal lines which intersect R.

Following this prescription with our integral we get:

$$
\iint_{R} f(x, y) d x d y=\int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) d x d y
$$

2. Double integrals in polar coordinates

The same procedure for putting in the limits works for these integrals also. Suppose we want to evaluate over the same region R as before

$$
\iint_{R} d r d \theta
$$

As usual, we integrate first with respect to r. Therefore, we

1. Hold θ fixed, and let r increase (since we are integrating with respect to r). As the point moves, it traces out a ray going out from the origin.
2. Integrate from the r-value where the ray enters R to the r-value where it leaves. This gives the limits on r.
3. Integrate from the lowest value of θ for which the corresponding ray intersects R to the highest value of θ.
To follow this procedure, we need the equation of the line in polar coordinates. We have

$$
x+y=1 \quad \rightarrow \quad r \cos \theta+\mathbf{r} \sin \theta=1, \quad \text { or } \quad r=\frac{1}{\cos \theta+\sin \theta}
$$

This is the r value where the ray enters the region; it leaves where $r=1$. The rays which intersect R lie between $\theta=0$ and $\theta=\pi / 2$. Thus the double iterated integral in polar coordinates has the limits

$$
\int_{0}^{\pi / 2} \int_{1 /(\cos \theta+\sin \theta)}^{1} d r d \theta
$$

Exercises: 3B-1

3. Triple integrals in rectangular and cylindrical coordinates.

You do these the same way, basically. To supply limits for $\iiint_{D} d z d y d x$ over the region D, we integrate first with respect to z. Therefore we

1. Hold x and y fixed, and let z increase. This gives us a vertical line.
2. Integrate from the z-value where the vertical line enters the region D to the z-value where it leaves D.
3. Supply the remaining limits (in either $x y$-coordinates or polar coordinates) so that you include all vertical lines which intersect D. This means that you will be integrating the remaining double integral over the region R in the $x y$-plane which D projects onto.
For example, if D is the region lying between the two paraboloids

$$
z=x^{2}+y^{2} \quad z=4-x^{2}-y^{2}
$$

we get by following steps 1 and 2 ,

$$
\iiint_{D} d z d y d x=\iint_{R} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z d A
$$

where R is the projection of D onto the $x y$-plane. To finish the job, we have to determine what this projection is. From the picture, what we should determine is the $x y$-curve over which the two surfaces intersect. We find this curve by eliminating z from the two equations, getting

$$
\begin{aligned}
& x^{2}+y^{2}=4-x^{2}-y^{2}, \quad \text { which implies } \\
& x^{2}+y^{2}=2
\end{aligned}
$$

Thus the $x y$-curve bounding R is the circle in the $x y$-plane with center at the origin and radius $\sqrt{2}$.

This makes it natural to finish the integral in polar coordinates. We get

$$
\iiint_{D} d z d y d x=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z r d r d \theta
$$

the limits on z will be replaced by r^{2} and $4-r^{2}$ when the integration is carried out.

Exercises: 5A-2

4. Spherical coordinates.

Once again, we use the same procedure. To calculate the limits for an iterated integral $\iiint_{D} d \rho d \phi d \theta$ over a region D in 3 -space, we are integrating first with respect to ρ. Therefore we

1. Hold ϕ and θ fixed, and let ρ increase. This gives us a ray going out from the origin.
2. Integrate from the ρ-value where the ray enters D to the ρ-value where the ray leaves D. This gives the limits on ρ.
3. Hold θ fixed and let ϕ increase. This gives a family of rays, that form a sort of fan. Integrate over those ϕ-values for which the rays intersect the region D.

4. Finally, supply limits on θ so as to include all of the fans which intersect the region D.
For example, suppose we start with the circle in the $y z$-plane of radius 1 and center at $(1,0)$, rotate it about the z-axis, and take D to be that part of the resulting solid lying in the first octant.

First of all, we have to determine the equation of the surface formed by the rotated circle. In the $y z$-plane, the two coordinates ρ and ϕ are indicated. To see the relation between them when P is on the circle, we see that also angle $O A P=\phi$, since both the angle ϕ and $O A P$ are complements of the same angle, $A O P$. From the right triangle, this shows the relation is $\rho=2 \sin \phi$.

As the circle is rotated around the z-axis, the relationship stays the same, so $\rho=2 \sin \phi$ is the equation of the whole surface.

To determine the limits of integration, when ϕ and θ are fixed, the correpsonding ray enters the region where $\rho=0$ and leaves where $\rho=2 \sin \phi$.

As ϕ increases, with θ fixed, it is the rays between $\phi=0$ and $\phi=\pi / 2$ that intersect D, since we are only considering the portion of the surface lying in the first octant (and thus above the $x y$-plane).

Again, since we only want the part in the first octant, we only use θ values from 0 to $\pi / 2$. So the iterated integral is

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2 \sin \phi} d \rho d \phi d \theta
$$

Exercises: 5B-1

