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18.02 Multivariable Calculus, Fall 2007 
Transcript – Lecture 3 

Remember last time -- -- we learned about the cross product of vectors in space. 
Remember the definition of cross product is in terms of this determinant det| i hat, j 
hat, k hat, and then the components of A, a1, a2, a3, and then the components of B| 
This is not an actual determinant because these are not numbers. But it's a symbolic 
notation, to remember what the actual formula is. 

The actual formula is obtained by expanding the determinant. So, we actually get the 
determinant of a2, a3, b2, b3 times i hat, minus the determinant of a1, a3, b1, b3 
times j hat plus the determinant of a1, a2, b1, b2, times k hat. And we also saw a 
more geometric definition of the cross product. We have learned that the length of 
the cross product is equal to the area of the parallelogram with sides A and B. 

We have also learned that the direction of the cross product is given by taking the 
direction that's perpendicular to A and B. If I draw A and B in a plane (they 
determine a plane), then the cross product should go in the direction that's 
perpendicular to that plane. Now, there's two different possible directions that are 
perpendicular to a plane. And, to decide which one it is, we use the right-hand rule, 
which says if you extend your right hand in the direction of the vector A, then curve 
your fingers in the direction of B, then your thumb will go in the direction of the 
cross product. 

One thing I didn't quite get to say last time is that there are some funny 
manipulation rules. What are we allowed to do or not do with cross products? So, let 
me tell you right away the most surprising one if you've never seen it before: A cross 
B and B cross A are not the same thing. Why are they not the same thing? Well, one 
way to see it is to think geometrically. The parallelogram still has the same area, and 
it's still in the same plane. So, the cross product is still perpendicular to the same 
plane. But, what happens is that, if you try to apply the right-hand rule but exchange 
the roles of A and B, then you will either injure yourself, or your thumb will end up 
pointing in the opposite direction. 

So, in fact, B cross A and A cross B are opposite of each other. And you can check 
that in the formula because, for example, the i component is a2 b3 minus a3 b2. If 
you swap the roles of A and B, you will also have to change the signs. That's a 
slightly surprising thing, but you will see one easily adjusts to it. It just means one 
must resist the temptation to write AxB equals BxA. Whenever you do that, put a 
minus sign. 

Now, in particular, what happens if I do A cross A? Well, I will get zero. And, there's 
many ways to see that. One is to use the formula. Also, you can see that the 
parallelogram formed by A and A is completely flat, and it has area zero. So, we get 
the zero vector. Hopefully you got practice with cross products, and computing them, 
in recitation yesterday. Let me just point out one important application of cross 
product that maybe you haven't seen yet. 



Let's say that I'm given three points in space, and I want to find the equation of the 
plane that contains them. So, say I have P1, P2, P3, three points in space. They 
determine a plane, at least if they are not aligned, and we would like to find the 
equation of the plane that they determine. That means, let's say that we have a 
point, P, in space with coordinates x, y, z. Well, to find the equation of the plane --

-- the plane containing P1, P2, and P3, we need to find a condition on the 
coordinates x, y, z, telling us whether P is in the plane or not. We have several ways 
of doing that. For example, one thing we could do. Let me just backtrack to 
determinants that we saw last time. One way to think about it is to consider these 
vectors, P1P2, P1P3, and P1P. The question of whether they are all in the same plane 
is the same as asking ourselves whether the parallelepiped that they form is actually 
completely flattened. 

So, if I try to form a parallelepiped with these three sides, and P is not in the plane, 
then it will have some volume. But, if P is in the plane, then it's actually completely 
squished. So,one possible answer, one possible way to think of the equation of a 
plane is that the determinant of these vectors should be zero. Take the determinant 
of (vector P1P,vector P1P2,vector P1P3) equals 0 (if you do it in a different order it 
doesn't really matter). 

One possible way to express the condition that P is in the plane is to say that the 
determinant of these three vectors has to be zero. And, if I am given coordinates for 
these points -- I'm not giving you numbers, but if I gave you numbers, then you 
would be able to plug those numbers in. So, you could compute these two vectors 
P1P2 and P1P3 explicitly. But, of course, P1P would depend on x, y, and z. So, when 
you compute the determinant, you get a formula that involves x, y, and z. And you'll 
find that this condition on x, y, z is the equation of a plane. We're going to see more 
about that pretty soon. 

Now, let me tell you a slightly faster way of doing it. Actually, it's not much faster, 
It's pretty much the same calculation, but it's maybe more enlightening. Let me 
actually show you a nice color picture that I prepared for this. One thing that's on 
this picture that I haven't drawn before is the normal vector to the plane. Why is 
that? Well, let's say that we know how to find a vector that's perpendicular to our 
plane. 

Then, what does it mean for the point, P, to be in the plane? It means that the 
direction from P1 to P has to be perpendicular to this vector N. So here's another 
solution: P is in the plane exactly when the vector P1P is perpendicular to N, where N 
is some vector that's perpendicular to the plane. N is called a normal vector. How do 
we rephrase this condition? Well, we've learned how to detect whether two vectors 
are perpendicular to each other using dot product (that was the first lecture). 

These two vectors are perpendicular exactly when their dot product is zero. So, 
concretely, if we have a point P1 given to us, and say we have been able to compute 
the vector N, then when we actually compute what happens, here we will have the 
coordinates x, y, z, of a point P, and we will get some condition on x, y, z. That will 
be the equation of a plane. Now, why are these things the same? Well, before I can 
tell you that, I should tell you how to find a normal vector. Maybe you are already 
starting to see what the method should be, because we know how to find a vector 
perpendicular to two given vectors. We know two vectors in that plane, for example, 
P1P2, and P1P3. 



Actually, I could have used another permutation of these points, but, let's use this. 
So, if I want to find a vector that's perpendicular to both P1P2 and P1P3 at the same 
time, all I have to do is take their cross product. So, how do we find a vector that's 
perpendicular to the plane? The answer is just the cross product P1P2 cross P1P3. 
Say you actually took the points in a different order, and you took P1P3 x P1P2. You 
would get, of course, the opposite vector. That is fine. Any plane actually has 
infinitely many normal vectors. You can just multiply a normal vector by any 
constant, you will still get a normal vector. 

So, that's going to be one of the main uses of dot product. When we know two 
vectors in a plane, it lets us find the normal vector to the plane, and that is what we 
need to find the equation. Now, why is that the same as our first answer over there? 
Well, the condition that we have is that P1P dot N should be 0. And we said N is 
actually P1P2 cross P1P3. So, this is what we want to be zero. Now, if you 
remember, a long time ago (that was Friday) we've introduced this thing and called 
it the triple product. 

And what we've seen is that the triple product is the same thing as the determinant. 
So, in fact, these two ways of thinking, one saying that the box formed by these 
three vectors should be flat and have volume zero, and the other one saying that we 
can find a normal vector and then express the condition that a vector is in the plane 
if it's perpendicular to the normal vector, are actually giving us the same formula in 
the end. 

OK, any quick questions before we move on? STUDENT QUESTION: are those two 
equal only when P is in the plane, or no matter where it is? So, these two quantities, 
P1P dot the cross product, or the determinant of the three vectors, are always equal 
to each other. They are always the same. And now, if a point is not in the plane, 
then their numerical value will be nonzero. If P is in the plane, it will be zero. 

OK, let's move on and talk a bit about matrices. Probably some of you have learnt 
about matrices a little bit in high school, but certainly not all of you. So let me just 
introduce you to a little bit about matrices -- just enough for what we will need later 
on in this class. If you want to know everything about the secret life of matrices, 
then you should take 18.06 someday. OK, what's going to be our motivation for 
matrices? Well, in life, a lot of things are related by linear formulas. And, even if they 
are not, maybe sometimes you can approximate them by linear formulas. 

So, often, we have linear relations between variables -- for example, if we do a 
change of coordinate systems. For example, say that we are in space, and we have a 
point. Its coordinates might be, let me call them x1, x2, x3 in my initial coordinate 
system. But then, maybe I need to actually switch to different coordinates to better 
solve the problem because they're more adapted to other things that we'll do in the 
problem. 

And so I have other coordinates axes, and in these new coordinates, P will have 
different coordinates -- let me call them, say, u1, u2, u3. And then, the relation 
between the old and the new coordinates is going to be given by linear formulas -- at 
least if I choose the same origin. Otherwise, there might be constant terms, which I 
will not insist on. Let me just give an example. For example, maybe, let's say u1 
could be 2 x1 3 x2 3 x3. u2 might be 2 x1 4 x2 5 x3. u3 might be x1 x2 2 x3. 



Do not ask me where these numbers come from. I just made them up, that's just an 
example of what might happen. You can put here your favorite numbers if you want. 
Now, in order to express this kind of linear relation, we can use matrices. A matrix is 
just a table with numbers in it. And we can reformulate this in terms of matrix 
multiplication or matrix product. So, instead of writing this, I will write that the 
matrix |2, 3, 3; 2, 4, 5; 1, 1, 2| times the vector <x1, x2, x3> is equal to <u1, u2, 
u3>. 

Hopefully you see that there is the same information content on both sides. I just 
need to explain to you what this way of multiplying tables of numbers means. Well, 
what it means is really that we'll have exactly these same quantities. Let me just say 
that more symbolically: so maybe this matrix could be called A, and this we could 
call X, and this one we could call U. Then we'll say A times X equals U, which is a lot 
shorter than that. Of course, I need to tell you what A, X, and U are in terms of their 
entries for you to get the formula. 

But it's a convenient notation. So, what does it mean to do a matrix product? The 
entries in the matrix product are obtained by taking dot products. Let's say we are 
doing the product AX. We do a dot products between the rows of A and the columns 
of X. Here, A is a 3x3 matrix -- that just means there's three rows and three 
columns. And X is a column vector, which we can think of as a 3x1 matrix. It has 
three rows and only one column. Now, what can we do? Well, I said we are going to 
do a dot product between a row of A: 2, 3, 3, and a column of X: x1, x2, x3. That 
dot product will be two times x1 plus three times x2 plus three times x3. 

OK, it's exactly what we want to set u1 equal to. Let's do the second one. I take the 
second row of A: 2, 4, 5, and I do the dot product with x1, x2, x3. I will get two 
times x1 plus four times x2 plus five times x3, which is u2. And, same thing with the 
third one: one times x1 plus one times x2 plus two times x3. So that's matrix 
multiplication. Let me restate things more generally. If I want to find the entries of a 
product of two matrices, A and B -- I'm saying matrices, but of course they could be 
vectors. Vectors are now a special case of matrices, just by taking a matrix of width 
one. 

So, if I have my matrix A, and I have my matrix B, then I will get the product, AB. 
Let's say for example -- this works in any size -- let's say that A is a 3x4 matrix. So, 
it has three rows, four columns. And, here, I'm not going to give you all the values 
because I'm not going to compute everything. It would take the rest of the lecture. 
And let's say that B is maybe size 4x2. So, it has two columns and four rows. And, 
let's say, for example, that we have the second column: 0, 3, 0, 2. 

So, in A times B, the entries should be the dot products between these rows and 
these columns. Here, we have two columns. Here, we have three rows. So, we 
should get three times two different possibilities. And so the answer will have size 
3x2. We cannot compute most of them, because I did not give you numbers, but one 
of them we can compute. We can compute the value that goes here, namely, this 
one in the second column. 

So, I select the second column of B, and I take the first row of A, and I find: 1 times 
0: 0. 2 times 3: 6, plus 0, plus 8, should make 14. So, this entry right here is 14. In 
fact, let me tell you about another way to set it up so that you can remember more 
easily what goes where. One way that you can set it up is you can put A here. You 
can put B up here, and then you will get the answer here. And, if you want to find 



what goes in a given slot here, then you just look to its left and you look above it, 
and you do the dot product between these guys. That's an easy way to remember. 

First of all, it tells you what the size of the answer will be. The size will be what fits 
nicely in this box: it should have the same width as B and the same height as A. And 
second, it tells you which dot product to compute for each position. You just look at 
what's to the left, and what's above the given position. Now, there's a catch. Can we 
multiply anything by anything? Well, no. I wouldn't ask the question otherwise. But 
anyway, to be able to do this dot product, we need to have the same number of 
entries here and here. Otherwise, we can't say "take this times that, plus this times 
that, and so on" if we run out of space on one of them before the other. 

So, the condition -- and it's important, so let me write it in red -- is that the width of 
A must equal the height of B. (OK, it's a bit cluttered, but hopefully you can still see 
what I'm writing.) OK, now we know how to multiply matrices. So, what does it 
mean to multiply matrices? Of course, we've seen in this example that we can use a 
matrix to tell us how to transform from x's to u's. And, that's an example of 
multiplication. But now, let's see that we have two matrices like that telling us how 
to transform from something to something else. What does it mean to multiply 
them? 

I claim that the product AB represents doing first the transformation B, then 
transformation A. That's a slightly counterintuitive thing, because we are used to 
writing things from left to right. Unfortunately, with matrices, you multiply things 
from right to left. If you think about it, say you have two functions, f and g, and you 
write f(g(x)), it really means you apply first g then f. It works the same way as that. 
OK, so why is this? Well, if I write AB times X where X is some vector that I want to 
transform, it's the same as A times BX. 

This property is called associativity. And, it's a good property of well-behaved 
products -- not of cross product, by the way. Matrix product is associative. That 
means we can actually think of a product ABX and multiply them in whichever order 
we want. We can start with BX or we can start with AB. So, now, BX means we apply 
the transformation B to X. And then, multiplying by A means we apply the 
transformation A. So, we first apply B, then we apply A. That's the same as applying 
AB all at once. Another thing -- a warning: AB and BA are not the same thing at all. 

You can probably see that already from this interpretation. It's not the same thing to 
convert oranges to bananas and then to carrots, or vice versa. Actually, even worse: 
this thing might not even be well defined. If the width of A equals the height of B, we 
can do this product. But it's not clear that the width of B will equal the height of A, 
which is what we would need for that one. So, the size condition, to be able to do the 
product, might not make sense -- maybe one of the products doesn't make sense. 
Even if they both make sense, they are usually completely different things. The next 
thing I need to tell you about is something called the identity matrix. 

The identity matrix is the matrix that does nothing. What does it mean to do 
nothing? I don't mean the matrix is zero. The matrix zero would take X and would 
always give you back zero. That's not a very interesting transformation. What I 
mean is the guy that takes X and gives you X again. It's called I, and it has the 
property that IX equals X for all X. So, it's the transformation from something to 
itself. It's the obvious transformation -- called the identity transformation. So, how 
do we write that as a matrix? Well, actually there's an identity for each size because, 



depending on whether X has two entries or ten entries, the matrix I needs to have a 
different size. For example, the identity matrix of size 3x3 has entries one, one, one 
on the diagonal, and zero everywhere else. 

OK, let's check. If we multiply this with a vector -- start thinking about it. What 
happens when multiply this with the vector X? OK, so let's say I multiply the matrix I 
with a vector x1, x2, x3. What will the first entry be? It will be the dot product 
between <1,0,0> and <x1 x2 x3>. This vector is i hat. If you do the dot product 
with i hat, you will get the first component -- that will be x1. One times x1 plus zero, 
zero. Similarly here, if I do the dot product, I get zero plus x2 plus zero. 

I get x2, and here I get x3. OK, it works. Same thing if I put here a matrix: I will get 
back the same matrix. In general, the identity matrix in size n x n is an n x n matrix 
with ones on the diagonal, and zeroes everywhere else. You just put 1 at every 
diagonal position and 0 elsewhere. And then, you can see that if you multiply that by 
a vector, you'll get the same vector back. OK, let me give you another example of a 
matrix. Let's say that in the plane we look at the transformation that does rotation 
by 90°, let's say, counterclockwise. I claim that this is given by the matrix: |0, 1; -
1, 0|. Let's try to see why that is the case. 

Well, if I do R times i hat -- if I apply that to the first vector, i hat: i hat will be 
<1,0> so in this product, first you will get 0, and then you will get 1. You get j hat. 
OK, so this thing sends i hat to j hat. What about j hat? Well, you get negative one. 
And then you get 0. So, that's minus i hat. So, j is sent towards here. And, in 
general, if you apply it to a vector with components x,y, then you will get back -y,x, 
which is the formula we've seen for rotating a vector by 90°. 

So, it seems to do what we want. By the way, the columns in this matrix represent 
what happens to each basis vector, to the vectors i and j. This guy here is exactly 
what we get when we multiply R by i. And, when we multiply R by j, we get this guy 
here. So, what's interesting about this matrix? Well, we can do computations with 
matrices in ways that are easier than writing coordinate change formulas. For 
example, if you compute R squared, so if you multiply R with itself: I'll let you do it 
as an exercise, but you will find that you get |-1,0;0,-1|. So, that's minus the 
identity matrix. Why is that? Well, if I rotate something by 90° and then I rotate by 
90° again, then I will rotate by 180°. 

That means I will actually just go to the opposite point around the origin. So, I will 
take (x,y) to (-x,-y). And if I applied R four times, R^4 would be identity. OK, 
questions? STUDENT QUESTION: when you said R equals that matrix, is that the 
definition of R? How did I come up with this R? Well, secretly, I worked pretty hard 
to find the entries that would tell me how to rotate something by 90° 
counterclockwise. So, remember: what we saw last time or in the first lecture is that, 
to rotate a vector by 90°, we should change (x, y) to (-y, x). 

And now I'm trying to express this transformation as a matrix. So, maybe you can 
call these guys u and v, and then you write that u equals 0x-1y, and that v equals 1x 
0y. So that's how I would find it. Here, I just gave it to you already made, so you 
didn't really see how I found it. You will see more about rotations on the problem 
set. OK, next I need to tell you how to invert matrices. So, what's the point of 
matrices? 



It's that it gives us a nice way to think about changes of variables. And, in particular, 
if we know how to express U in terms of X, maybe we'd like to know how to express 
X in terms of U. Well, we can do that, because we've learned how to solve linear 
systems like this. So in principle, we could start working, substituting and so on, to 
find formulas for x1, x2, x3 as functions of u1, u2, u3. 

And the relation will be, again, a linear relation. It will, again, be given by a matrix. 
Well, what's that matrix? It's the inverse transformation. It's the inverse of the 
matrix A. So, we need to learn how to find the inverse of a matrix directly. The 
inverse of A, by definition, is a matrix M, with the property that if I multiply A by M, 
then I get identity. And, if I multiply M by A, I also get identity. The two properties 
are equivalent. 

That means, if I apply first the transformation A, then the transformation M, actually 
I undo the transformation A, and vice versa. These two transformations are the 
opposite of each other, or I should say the inverse of each other. For this to make 
sense, we need A to be a square matrix. It must have size n by n. It can be any size, 
but it must have the same number of rows as columns. It's a general fact that you 
will see more in detail in linear algebra if you take it. Let's just admit it. The matrix M 
will be denoted by A inverse. 

Then, what is it good for? Well, for example, finding the solution to a linear system. 
What's a linear system in our new language? It's: a matrix times some unknown 
vector, X, equals some known vector, B. How do we solve that? We just compute: X 
equals A inverse B. Why does that work? How do I get from here to here? Let's be 
careful. (I'm going to reuse this matrix, but I'm going to erase it nonetheless and I'll 
just rewrite it). 

If AX=B, then let's multiply both sides by A inverse. A inverse times AX is A inverse 
B. And then, A inverse times A is identity, so I get: X equals A inverse B. That's how 
I solved my system of equations. So, if you have a calculator that can invert 
matrices, then you can solve linear systems very quickly. Now, we should still learn 
how to compute these things. Yes? [Student Questions:]"How do you know that A 
inverse will be on the left of B and not after it " 

Well, it's exactly this derivation. So, if you are not sure, then just reproduce this 
calculation. To get from here to here, what I did is I multiplied things on the left by A 
inverse, and then this guy simplify. If I had put A inverse on the right, I would have 
AX A inverse, which might not make sense, and even if it makes sense, it doesn't 
simplify. So, the basic rule is that you have to multiply by A inverse on the left so 
that it cancels with this A that's on the left. STUDENT QUESTION: "And if you put it 
on the left on this side then it will be on the left with B as well?" 

That's correct, in our usual way of dealing with matrices, where the vectors are 
column vectors. It's just something to remember: if you have a square matrix times 
a column vector, the product that makes sense is with the matrix on the left, and the 
vector on the right. The other one just doesn't work. You cannot take X times A if A 
is a square matrix and X is a column vector. This product AX makes sense. The other 
one XA doesn't make sense. It's not the right size. OK. What we need to do is to 
learn how to invert a matrix. It's a useful thing to know, first for your general 
knowledge, and second because it's actually useful for things we'll see later in this 
class. In particular, on the exam, you will need to know how to invert a matrix by 
hand. 



This formula is actually good for small matrices, 3x3, 4x4. It's not good at all if you 
have a matrix of size 1,000x1,000. So, in computer software, actually for small 
matrices they do this, but for larger matrices, they use other algorithms. Let's just 
see how we do it. First of all I will give you the final answer. And of course I will need 
to explain what the answer means. We will have to compute something called the 
adjoint matrix. I will tell you how to do that. And then, we will divide by the 
determinant of A. 

How do we get to the adjoint matrix? Let's go through the steps on a 3x3 example --
the steps are the same no matter what the size is, but let's do 3x3. So, let's say that 
I'm giving you the matrix A -- let's say it's the same as the one that I erased earlier. 
That was the one relating our X's and our U's. The first thing I want to do is find 
something called the minors. What's a minor? It's a slightly smaller determinant. 
We've already seen them without calling them that way. The matrix of minors will 
have again the same size. Let's say we want this entry. Then, we just delete this row 
and this column, and we are left with a 2x2 determinant. 

So, here, we'll put the determinant 4, 5, 1, 2, which is 4 times 2: 8 -- minus 5: 3. 
Let's do the next one. So, for this entry, I'll delete this row and this column. I'm left 
with 2, 5, 1, 2. The determinant will be 2 times 2 minus 5, which is negative 1. Then 
minus 2, then I get to the second row, so I get to this entry. To find the minor here, 
I will delete this row and this column. And I'm left with 3, 3, 1, 2. 3 times 2 minus 3 
is 3. Let me just cheat and give you the others -- I think I've shown you that I can 
do them. Let's just explain the last one again. The last one is 2. To find the minor 
here, I delete this column and this row, and I take this determinant: 2 times 4 minus 
2 times 3. 

So it's the same kind of manipulation that we've seen when we've taken 
determinants and cross products. Step two: we go to another matrix that's called 
cofactors. So, the cofactors are pretty much the same thing as the minors except the 
signs are slightly different. What we do is that we flip signs according to a 
checkerboard diagram. You start with a plus in the upper left corner, and you 
alternate pluses and minuses. The rule is: if there is a plus somewhere, then there's 
a minus next to it and below it. And then, below a minus or to the right of a minus, 
there's a plus. 

So that's how it looks in size 3x3. What do I mean by that? I don't mean, make this 
positive, make this negative, and so on. That's not what I mean. What I mean is: if 
there's a plus, that means leave it alone -- we don't do anything to it. If there's a 
minus, that means we flip the sign. So, here, we'd get: 3, then 1, -2, -3, 1, 1... 3,-4, 
and 2. OK, that step is pretty easy. The only hard step in terms of calculations is the 
first one because you have to compute all of these 2x2 determinants. 

By the way, this minus sign here is actually related to the way in which, when we do 
a cross product, we have a minus sign for the second entry. OK, we're almost done. 
The third step is to transpose. What does it mean to transpose? It means: you read 
the rows of your matrix and write them as columns, or vice versa. So we switch rows 
and columns. What do we get? Well, let's just read the matrix horizontally and write 
it vertically. We read 3, 1, - 2: 3, 1, - 2. Then we read -3 3, 1, 1: - 3, 1, 1. Then, 3, 
- 4, 2: 3, - 4, 2. That's pretty easy. 



We're almost done. What we get here is this is the adjoint matrix. So, the fourth and 
last step is to divide by the determinant of A. We have to compute the determinant -
- the determinant of A, not the determinant of this guy. So: 2, 3, 3, 2, 4, 5, 1, 1, 2. 
I'll let you check my computation. I found that it's equal to 3. So the final answer is 
that A inverse is one third of the matrix we got there: |3, - 3, 3, 1, 1, - 4, - 2, 1, 2|. 
Now, remember, A told us how to find the u's in terms of the x's. This tells us how to 
find x-s in terms of u-s: if you multiply x1,x2,x3 by this you get u1,u2,u3. It also 
tells you how to solve a linear system: A times X equals something. 


