18.02 Problem Set 11 - Solutions of Part B

Problem 1

The total flux is $2 \pi^{2}$.

Along the cylinder $x^{2}+y^{2}=1$, we have $r=x^{2}+y^{2}=1$ and $\hat{\mathbf{n}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}$.
So $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}=\frac{x^{2}+y^{2}}{x^{2}+y^{2}+z^{2}}=\frac{1}{1+z^{2}}$ and $\mathrm{dS}=r \mathrm{~d} \theta \mathrm{~d} z=\mathrm{d} \theta \mathrm{d} z$.
Hence, $\iint_{S} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}} \mathrm{dS}=\int_{-\infty}^{+\infty} \int_{0}^{2 \pi} \frac{1}{1+z^{2}} \mathrm{~d} \theta \mathrm{~d} z=\int_{-\infty}^{+\infty} \frac{2 \pi}{1+z^{2}} \mathrm{~d} z=$ $=[2 \pi \arctan (z)]_{-\infty}^{+\infty}=2 \pi^{2}$.

Problem 2

a) At the face:
$\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}\right)$ The normal $\hat{\mathbf{n}}=-\hat{\boldsymbol{\imath}}$ and $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}=0$.
$\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}\right)$ The normal $\hat{\mathbf{n}}=\frac{\langle 1,-1,1\rangle}{\sqrt{3}}$ and so $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}=-\sqrt{3} x \leq 0$.

In fact, a vector perpendicular to the face and pointing outwards is obtained as $\langle 1,1,0\rangle \times\langle 0,1,1\rangle=\left|\begin{array}{ccc}\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{k}} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=\langle 1,-1,1\rangle$.
$\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}\right)$ The face is obtained from the face $\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}\right)$ by reflecting with respect to the $x y$-plane (that is, $(x, y, z) \mapsto(x, y,-z)$). So $\hat{\mathbf{n}}=\frac{\langle 1,-1,-1\rangle}{\sqrt{3}}$ and so $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}=-\sqrt{3} x \leq 0$.
$\left(\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}\right)$ The normal is $\hat{\mathbf{n}}=\hat{\boldsymbol{\jmath}}$ and $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}=x \geq 0$.
b) The total flux is 0 .

The flux through the single faces is:
$\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}\right)$ Zero, because $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}=0$.
$\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}\right)$ The face in on the plane $x-y+z=0$, so $\mathrm{d} \overrightarrow{\mathrm{S}}=\langle 1,-1,1\rangle \mathrm{d} x \mathrm{~d} y$ and $\overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathrm{S}}=-x \mathrm{~d} x \mathrm{~d} y$. Integrating over the shadow on the $x y$-plane, we obtain $\int_{\text {face }} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathrm{S}}=\int_{0}^{1} \int_{x}^{1}-x \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} x(x-1) \mathrm{d} x=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}=-\frac{1}{6}$.
$\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}\right)$ The flux is the same as for the face $\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}\right)$, that is $-\frac{1}{6}$, because of the symmetry discussed in (a).
$\left(\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}\right)$ The face is parallel to the $x z$-plane, so $\mathrm{dS}=\mathrm{d} x \mathrm{~d} z$.
Moreover, the face and $\overrightarrow{\mathbf{F}}$ are invariant under reflection with respect to the $x y$-plane. So we can integrate only on the half with $z>0$ and the multiply by 2 .
The flux is $2 \int_{0}^{1} \int_{0}^{1-z} x \mathrm{~d} x \mathrm{~d} z=2 \int_{0}^{1} \frac{(1-z)^{2}}{2} \mathrm{~d} z=\left[\frac{(z-1)^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$.
Hence the total flux is $-\frac{1}{6}-\frac{1}{6}+\frac{1}{3}=0$.
c) $\operatorname{div} \overrightarrow{\mathbf{F}}=0$, so the total flux of $\overrightarrow{\mathbf{F}}$ outgoing from the tetrahedron is 0 .

Problem 3

The solid R is a cone with vertex in $(0,0,10)$ and base on the $x y$-plane equal to the disc of radius 10 centered at the origin.
We must show that $\iiint_{R} \operatorname{div} \overrightarrow{\mathbf{F}} \mathrm{dV}=\iint_{\partial R} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~S}}$, where ∂R is the boundary of R (in our case, the base and the lateral surface of the cone).
(LHS) $\operatorname{div} \overrightarrow{\mathbf{F}}=2$, so $\iiint_{R} \operatorname{div} \overrightarrow{\mathbf{F}} \mathrm{dV}=2 \cdot \operatorname{Vol}(R)=2 \frac{\pi 10^{2} \cdot 10}{3}=\frac{2000 \pi}{3}$.
(RHS) The unit normal vector outgoing from the base is $-\hat{\boldsymbol{k}}$ and $\overrightarrow{\mathbf{F}} \cdot(-\hat{\boldsymbol{k}})=0$, so the flux through the base is 0 .
The lateral surface is given by $z=f(x, y)=10-\sqrt{x^{2}+y^{2}}$, so $\mathrm{d} \overrightarrow{\mathrm{S}}=\left\langle-f_{x},-f_{y}, 1\right\rangle \mathrm{d} x \mathrm{~d} y=\left\langle\frac{x}{r}, \frac{y}{r}, 1\right\rangle r \mathrm{~d} r \mathrm{~d} \theta$ (we switched to polar coordinates) and $\overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathrm{S}}=r^{2} \mathrm{~d} r \mathrm{~d} \theta$.
Hence, the flux is $\int_{0}^{2 \pi} \int_{0}^{10} r^{2} \mathrm{~d} r \mathrm{~d} \theta=2 \pi\left[\frac{r^{3}}{3}\right]_{0}^{10}=\frac{2000 \pi}{3}$.

Problem 4

a) $\iint_{S}(f \nabla g) \cdot \hat{\mathbf{n}} \mathrm{dS}=\iiint_{D} \operatorname{div}(f \nabla g) \mathrm{dV}$.

On the LHS, $f \nabla g \cdot \hat{\mathbf{n}}=f \frac{\partial g}{\partial n}$.
On the RHS, $\operatorname{div}(f \nabla g)=\operatorname{div}\left(f g_{x} \hat{\imath}+f g_{y} \hat{\boldsymbol{\jmath}}+f g_{z} \hat{\boldsymbol{k}}\right)=$
$=\left(f g_{x}\right)_{x}+\left(f g_{y}\right)_{y}+\left(f g_{z}\right)_{z}=f_{x} g_{x}+f g_{x x}+f_{y} g_{y}+f g_{y y}+f_{z} g_{z}+f g_{z z}=$ $=\left(f_{x} g_{x}+f_{y} g_{y}+f_{z} g_{z}\right)+f\left(g_{x x}+g_{y y}+g_{z z}\right)=\nabla f \cdot \nabla g+f \nabla^{2} g$.
b) If $f=1$ and $g=u$ is harmonic, then $\nabla f=0$ and $\nabla^{2} g=0$, so $\nabla f \cdot \nabla g+f \nabla^{2} g=0$.
Hence, Green's first identity gives $\iint_{S} \frac{\partial u}{\partial n} \mathrm{dS}=0$.
c) $\iint_{S} f \frac{\partial g}{\partial n} \mathrm{dS}=\iiint_{D}\left(\nabla f \cdot \nabla g+f \nabla^{2} g\right) \mathrm{dV}$
$\iint_{S} g \frac{\partial f}{\partial n} \mathrm{dS}=\iiint_{D}\left(\nabla g \cdot \nabla f+g \nabla^{2} f\right) \mathrm{dV}$

Subtracting the second row from the first row we obtain

$$
\iint_{S}\left(f \frac{\partial g}{\partial n}-g \frac{\partial f}{\partial n}\right) \mathrm{dS}=\iiint_{D}\left(f \nabla^{2} g-g \nabla^{2} f\right) \mathrm{d} V
$$

d) $\nabla^{2} v=0$ (that is, $v=\frac{1}{\rho}$ is harmonic) outside the origin.

In fact, $v_{x}=-\frac{1}{\rho^{2}} \rho_{x}=-\frac{x}{\rho^{3}}$ and $v_{x x}=\left(-\frac{x}{\rho^{3}}\right)_{x}=-\frac{1}{\rho^{3}}+\frac{3 x}{\rho^{4}} \frac{x}{\rho}=-\frac{1}{\rho^{3}}+\frac{3 x^{2}}{\rho^{5}}$.
Similarly, $v_{y y}=-\frac{1}{\rho^{3}}+\frac{3 y^{2}}{\rho^{5}}$ and $v_{z z}=-\frac{1}{\rho^{3}}+\frac{3 z^{2}}{\rho^{5}}$, so that
$\nabla^{2} v=-\frac{3}{\rho^{3}}+\frac{3 x^{2}+3 y^{2}+3 z^{2}}{\rho^{5}}=0$.
Let's apply Green's second identity to u and v, with D equal to the region $a<\rho<b$ and S equal to the union of the two spheres S_{a} and S_{b}.
$\iint_{S}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) \mathrm{d} S=\iiint_{D}\left(u \nabla^{2} v-v \nabla^{2} u\right) \mathrm{dV}$.
The RHS is zero, because $\nabla^{2} u=\nabla^{2} v=0$, so we get
$\iint_{S_{a}}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) \mathrm{dS}+\iint_{S_{b}}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) \mathrm{d} S=0$.
Along $S_{b}, v=1 / b$, so $\iint_{S_{b}}-v \frac{\partial u}{\partial n} \mathrm{dS}=-\frac{1}{b} \iint_{S_{b}} \frac{\partial u}{\partial n} \mathrm{dS}=0 \quad$ because of (b).
Similarly, $\iint_{S_{a}}-v \frac{\partial u}{\partial n} \mathrm{dS}=0$.
The normal vector on S_{b} outgoing from the region D is $\hat{\mathbf{n}}=\hat{\boldsymbol{\rho}}=\frac{x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \hat{\boldsymbol{k}}}{b}$, so $\frac{\partial v}{\partial n}=\frac{\partial v}{\partial \rho}=-\frac{1}{\rho^{2}}=-\frac{1}{b^{2}}$ along S_{b}.
The normal vector on S_{a} outgoing from the region D is $\hat{\mathbf{n}}=-\hat{\boldsymbol{\rho}}=-\frac{x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \hat{\boldsymbol{k}}}{a}$,
so $\frac{\partial v}{\partial n}=-\frac{\partial v}{\partial \rho}=\frac{1}{\rho^{2}}=\frac{1}{a^{2}}$ along S_{a}.
Therefore, $\frac{1}{a^{2}} \iint_{S_{a}} u \mathrm{dS}=\frac{1}{b^{2}} \iint_{S_{b}} u \mathrm{dS}$.
e) Let $b>0$. We want to show that $\frac{1}{4 \pi b^{2}} \iint_{S_{b}} w \mathrm{dS}=w(\mathbf{0})$, where S_{b} is the sphere of radius b centered at the origin $\mathbf{0}$.
Using (d), we have $\frac{1}{4 \pi b^{2}} \iint_{S_{b}} w \mathrm{dS}=\frac{1}{4 \pi a^{2}} \iint_{S_{a}} w \mathrm{dS}$ for every $a>0$.
In particular, $\frac{1}{4 \pi b^{2}} \iint_{S_{b}} w \mathrm{dS}=\lim _{a \rightarrow 0} \frac{1}{4 \pi a^{2}} \iint_{S_{a}} w \mathrm{dS}=w(\mathbf{0})$.

To deduce the Mean Value Theorem for the point P, we must choose D to be given by the locus of points whose distance from P is between a and b (that is, the region enclosed by two spheres of radii a and b centered at P) and $v(x, y, z)$ to be the function given by $v(Q)=\frac{1}{|\overrightarrow{P Q}|}$.

