18.02 Problem Set 11 - Solutions of Part B

Problem 1

The total flux is $2\pi^2$.

Along the cylinder $x^2 + y^2 = 1$, we have $r = x^2 + y^2 = 1$ and $\hat{\mathbf{n}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$. So $\vec{\mathbf{F}} \cdot \hat{\mathbf{n}} = \frac{x^2 + y^2}{x^2 + y^2 + z^2} = \frac{1}{1 + z^2}$ and $d\mathbf{S} = rd\theta dz = d\theta dz$. Hence, $\iint_S \vec{\mathbf{F}} \cdot \hat{\mathbf{n}} d\mathbf{S} = \int_{-\infty}^{+\infty} \int_0^{2\pi} \frac{1}{1 + z^2} d\theta dz = \int_{-\infty}^{+\infty} \frac{2\pi}{1 + z^2} dz =$ $= \left[2\pi \arctan(z)\right]_{-\infty}^{+\infty} = 2\pi^2.$

Problem 2

 $(\mathbf{P_0P_1P_2})$ The normal $\hat{\mathbf{n}} = -\hat{\imath}$ and $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}} = 0$. $(\mathbf{P_0P_1P_3})$ The normal $\hat{\mathbf{n}} = \frac{\langle 1, -1, 1 \rangle}{\sqrt{3}}$ and so $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}} = -\sqrt{3}x \leq 0$.

In fact, a vector perpendicular to the face and pointing outwards is ob-

tained as $\langle 1, 1, 0 \rangle \times \langle 0, 1, 1 \rangle = \begin{vmatrix} \hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \langle 1, -1, 1 \rangle.$

 $(\mathbf{P_0P_2P_3})$ The face is obtained from the face $(\mathbf{P_0P_1P_3})$ by reflecting with respect to the *xy*-plane (that is, $(x, y, z) \mapsto (x, y, -z)$). So $\hat{\mathbf{n}} = \frac{\langle 1, -1, -1 \rangle}{\sqrt{3}}$ and so $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}} = -\sqrt{3}x \leq 0$.

 $(\mathbf{P_1P_2P_3})$ The normal is $\hat{\mathbf{n}} = \hat{\boldsymbol{j}}$ and $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}} = x \ge 0$.

b) The total flux is 0.

The flux through the single faces is:

 $(\mathbf{P_0P_1P_2})$ Zero, because $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}} = 0$.

- $(\mathbf{P_0P_1P_3}) \text{ The face in on the plane } x y + z = 0, \text{ so } d\vec{\mathbf{S}} = \langle 1, -1, 1 \rangle dx dy \text{ and} \\ \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = -x dx dy. \text{ Integrating over the shadow on the } xy\text{-plane, we obtain} \\ \int_{\text{face}} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \int_0^1 \int_x^1 -x \, dy dx = \int_0^1 x(x-1) \, dx = \left[\frac{x^3}{3} \frac{x^2}{2}\right]_0^1 = -\frac{1}{6}.$
- $(\mathbf{P_0P_2P_3})$ The flux is the same as for the face $(\mathbf{P_0P_1P_3})$, that is $-\frac{1}{6}$, because of the symmetry discussed in (a).
- $\begin{aligned} (\mathbf{P_1P_2P_3}) & \text{The face is parallel to the xz-plane, so dS} = dxdz. \\ & \text{Moreover, the face and } \overrightarrow{\mathbf{F}} \text{ are invariant under reflection with respect to} \\ & \text{the xy-plane. So we can integrate only on the half with $z > 0$ and the multiply by 2. \\ & \text{The flux is } 2\int_0^1\int_0^{1-z}xdxdz = 2\int_0^1\frac{(1-z)^2}{2}dz = \left[\frac{(z-1)^3}{3}\right]_0^1 = \frac{1}{3}. \end{aligned}$

Hence the total flux is $-\frac{1}{6} - \frac{1}{6} + \frac{1}{3} = 0.$

c) div $\overrightarrow{\mathbf{F}} = 0$, so the total flux of $\overrightarrow{\mathbf{F}}$ outgoing from the tetrahedron is 0.

Problem 3

The solid R is a cone with vertex in (0, 0, 10) and base on the xy-plane equal to the disc of radius 10 centered at the origin.

We must show that $\iiint_R \operatorname{div} \overrightarrow{\mathbf{F}} \, \mathrm{dV} = \iint_{\partial R} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{S}}$, where ∂R is the boundary of R (in our case, the base and the lateral surface of the cone).

(LHS) div
$$\overrightarrow{\mathbf{F}} = 2$$
, so $\iiint_R \operatorname{div} \overrightarrow{\mathbf{F}} \, \mathrm{dV} = 2 \cdot \operatorname{Vol}(R) = 2 \frac{\pi 10^2 \cdot 10}{3} = \frac{2000\pi}{3}$

(RHS) The unit normal vector outgoing from the base is $-\hat{k}$ and $\vec{\mathbf{F}} \cdot (-\hat{k}) = 0$, so the flux through the base is 0. The lateral surface is given by $z = f(x, y) = 10 - \sqrt{x^2 + y^2}$, so $d\vec{\mathbf{S}} = \langle -f_x, -f_y, 1 \rangle dxdy = \left\langle \frac{x}{r}, \frac{y}{r}, 1 \right\rangle r dr d\theta$ (we switched to polar coordinates) and $\vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = r^2 dr d\theta$. Hence, the flux is $\int_0^{2\pi} \int_0^{10} r^2 dr d\theta = 2\pi \left[\frac{r^3}{3} \right]_0^{10} = \frac{2000\pi}{3}$.

Problem 4

a)
$$\iint_{S} (f\nabla g) \cdot \hat{\mathbf{n}} \, \mathrm{dS} = \iiint_{D} \operatorname{div}(f\nabla g) \, \mathrm{dV}.$$

On the LHS, $f\nabla g \cdot \hat{\mathbf{n}} = f \frac{\partial g}{\partial n}.$
On the RHS, div $(f\nabla g) = \operatorname{div} \left(fg_x \hat{\mathbf{i}} + fg_y \hat{\mathbf{j}} + fg_z \hat{\mathbf{k}} \right) =$
$$= (fg_x)_x + (fg_y)_y + (fg_z)_z = f_x g_x + fg_{xx} + f_y g_y + fg_{yy} + f_z g_z + fg_{zz} =$$
$$= (f_x g_x + f_y g_y + f_z g_z) + f(g_{xx} + g_{yy} + g_{zz}) = \nabla f \cdot \nabla g + f \nabla^2 g.$$

b) If f = 1 and g = u is harmonic, then $\nabla f = 0$ and $\nabla^2 g = 0$, so $\nabla f \cdot \nabla g + f \nabla^2 g = 0$. Hence, Green's first identity gives $\iint_S \frac{\partial u}{\partial n} d\mathbf{S} = 0$.

c)
$$\iint_{S} f \frac{\partial g}{\partial n} dS = \iiint_{D} \left(\nabla f \cdot \nabla g + f \nabla^{2} g \right) dV$$
$$\iint_{S} g \frac{\partial f}{\partial n} dS = \iiint_{D} \left(\nabla g \cdot \nabla f + g \nabla^{2} f \right) dV$$

Subtracting the second row from the first row we obtain

$$\iint_{S} \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n} \right) d\mathbf{S} = \iiint_{D} \left(f \nabla^{2} g - g \nabla^{2} f \right) d\mathbf{V}.$$

d) $\nabla^2 v = 0$ (that is, $v = \frac{1}{\rho}$ is harmonic) outside the origin. In fact, $v_x = -\frac{1}{\rho^2}\rho_x = -\frac{x}{\rho^3}$ and $v_{xx} = \left(-\frac{x}{\rho^3}\right)_x = -\frac{1}{\rho^3} + \frac{3x}{\rho^4}\frac{x}{\rho} = -\frac{1}{\rho^3} + \frac{3x^2}{\rho^5}$. Similarly, $v_{yy} = -\frac{1}{\rho^3} + \frac{3y^2}{\rho^5}$ and $v_{zz} = -\frac{1}{\rho^3} + \frac{3z^2}{\rho^5}$, so that $\nabla^2 v = -\frac{3}{\rho^3} + \frac{3x^2 + 3y^2 + 3z^2}{\rho^5} = 0$. Let's apply Green's second identity to u and v, with D equal to the region $a < \rho < b$ and S equal to the union of the two spheres S_a and S_b . $\iint_S \left(u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}\right) dS = \iiint_D \left(u\nabla^2 v - v\nabla^2 u\right) dV$. The RHS is zero, because $\nabla^2 u = \nabla^2 v = 0$, so we get $\iint_{S_a} \left(u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}\right) dS + \iint_{S_b} \left(u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}\right) dS = 0$. Along S_b , v = 1/b, so $\iint_{S_b} -v\frac{\partial u}{\partial n} dS = -\frac{1}{b} \iint_{S_b} \frac{\partial u}{\partial n} dS = 0$ because of (b). Similarly, $\iint_{S_a} -v\frac{\partial u}{\partial n} dS = 0$.

so $\frac{\partial v}{\partial n} = \frac{\partial v}{\partial \rho} = -\frac{1}{\rho^2} = -\frac{1}{b^2}$ along S_b .

The normal vector on S_a outgoing from the region D is $\hat{\mathbf{n}} = -\hat{\boldsymbol{\rho}} = -\frac{x\hat{\boldsymbol{i}} + y\hat{\boldsymbol{j}} + z\boldsymbol{k}}{a}$, so $\frac{\partial v}{\partial n} = -\frac{\partial v}{\partial \rho} = \frac{1}{\rho^2} = \frac{1}{a^2}$ along S_a . Therefore, $\frac{1}{a^2} \iint_{S} u \, \mathrm{dS} = \frac{1}{b^2} \iint_{S} u \, \mathrm{dS}$.

e) Let b > 0. We want to show that $\frac{1}{4\pi b^2} \iint_{S_b} w \, \mathrm{dS} = w(\mathbf{0})$, where S_b is the sphere of radius b centered at the origin $\mathbf{0}$. Using (d), we have $\frac{1}{4\pi b^2} \iint_{S_b} w \, \mathrm{dS} = \frac{1}{4\pi a^2} \iint_{S_a} w \, \mathrm{dS}$ for every a > 0. In particular, $\frac{1}{4\pi b^2} \iint_{S_b} w \, \mathrm{dS} = \lim_{a \to 0} \frac{1}{4\pi a^2} \iint_{S_a} w \, \mathrm{dS} = w(\mathbf{0})$. To deduce the Mean Value Theorem for the point P, we must choose D to be given by the locus of points whose distance from P is between a and b (that is, the region enclosed by two spheres of radii a and b centered at P) and v(x, y, z) to be the function given by $v(Q) = \frac{1}{|\overrightarrow{PQ}|}$.