These are the solutions to Exam 2 of 18.02, Spring 2006.

Notice that these solutions contain some explanations
in square parentheses [...] that were not required.

NAME
(*) By providing your e-mail address you are giving permission to your recitation instructor to e-mail you if did not pass the exam.

Please mark the box next to your recitation session.

	\square Rec.\#1	\square Rec.\#7
	\square Rec.\#2	\square Rec.\#8
Recitation:	\square Rec.\#3	\square Rec.\#9
	\square Rec.\#4	\square Rec.\#10
	\square Rec.\#6	\square Rec.\#11

18.02 Exam 2 Thursday, Mar 16th, 2006

Directions: Do all the work on these pages; use reverse side if needed. Answers without accompanying reasoning may only receive partial credit. No books, notes, or calculators. Please stop when asked to and don't talk until your paper is handed in.

Grading	
1.	$/ 20$
2.	$/ 15$
3.	/25
4.	120
5.	110
6.	/10
Total	
	$/ 100$

Problem 1
Let $f(x, y)=x y^{2}-8 y$.
a) (5) Find ∇f at $(2,3)$.

$$
\begin{aligned}
& \nabla f=\left\langle y^{2}, 2 x y-8\right\rangle \\
& \nabla f(2,3)=\left\langle 3^{2}, 2 \cdot 2 \cdot 3-8\right\rangle=\langle 9,4\rangle
\end{aligned}
$$

b) (5) Write the equation for the tangent plane to the graph of f through the point $(2,3,-6)$.

$$
\begin{aligned}
& z-(-6)=9 \cdot(x-2)+4(y-3) \\
& z+6=9 x-18+4 y-12
\end{aligned}
$$

Equ.: $9 x+4 y-z=36$
c) (5) Use a linear approximation to approximate the value $f(2.1,2.9)$.

$$
\begin{gathered}
f(2.1,2.9) \approx f(2,3)+\frac{\partial f}{\partial x}(2,3) \cdot(0.1)+\frac{\partial f}{\partial y}(2,3) \cdot(-0.1)= \\
=-6+9 \cdot(0.1)+4 \cdot(-0.1)=-5.5
\end{gathered}
$$

d) (5) Find the directional derivative of f at $(2,3)$ in the direction $2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}$.

$$
\begin{aligned}
& \hat{u}=\frac{2 \hat{\imath}+\hat{\jmath}}{\sqrt{2^{2}+1^{2}}}=\frac{2 \hat{\imath}+\hat{\jmath}}{\sqrt{5}}=\text { direction of } 2 \hat{\imath}+\hat{\jmath} . \\
& \begin{aligned}
\left.\frac{d f}{d s}\right|_{\hat{u}}(2,3) & =\nabla f(2,3) \cdot \hat{u}=\langle 9,4\rangle \cdot\langle 2,1\rangle \\
\sqrt{5} & = \\
& =\frac{18+4}{\sqrt{5}}=\frac{22}{\sqrt{5}}
\end{aligned}
\end{aligned}
$$

Problem 2
a) (10) On the contour plot below, mark the points of the level curve $f(x, y)=6$ at which $f_{x}>0$ and $f_{y}=0$.

b). (5) On the contour plot below, mark the points of the level curve $f(x, y)=8$ at which the slope of steepest ($|\nabla f|$ is largest).

Problem 3
Let $f(x, y)=x^{2}+x y+y^{2}+3 x$.
a) (10) Find and classify the critical points of f.
$\nabla f=\langle 2 x+y+3, x+2 y\rangle$
Critical points: $\nabla f=0$

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x+y+3=0 \\
x+2 y=0
\end{array}\right. \\
& \left\{\begin{array}{l}
x=-2 y \\
2(-2 y)+y+3=0
\end{array}\right. \\
& \left\{\begin{array}{l}
y=1 \\
x=-2
\end{array}\right.
\end{aligned}
$$

One critical point $P=(-2,1)$.
To dassify it, use second slerivalive test:

$$
\begin{aligned}
& f_{x x}=2, \quad f_{x y}^{\prime}=1, \quad f_{y y}=2 \\
& \Delta=2 \cdot 2-1^{2}=3
\end{aligned}
$$

$\left.\begin{array}{l}\Delta(P)=3>0 \\ f_{x x}(P)=2>0\end{array}\right\} \Rightarrow \begin{aligned} & P \text { is a } \\ & \text { local minimum. }\end{aligned}$
b) (10) Find the minimum and maximum values of f in the plane. Justify your answer.
max. value $="+\infty$ "
For example, along th x-axis $f(x, 0)=x^{2}+3 x \rightarrow \infty$ as $x \rightarrow \infty$.
Min. value $=-3$ (attained at $(-2,1)$)
To justify, must be sure there ate no smaller values than -3 as $x \rightarrow \pm \infty$ and/or $y \rightarrow \pm \infty$.

Reason: Completing the square $x^{2}+x y+y^{2}=\left(x+\frac{1}{2} y\right)^{2}+\frac{3}{4} y^{2}$, 50 $f \rightarrow \infty$ RS x andlor $g \rightarrow \pm \infty$ in any direction.
Since the min count be achieved A es $x \rightarrow \pm \infty$ and/or $y \rightarrow \pm \infty$, it must be achieved at the critical point $(-2,1)$ as claimed above.
c) (5) Find the minimum and maximum values of f in the region $x \geq 1$.
max. value $={ }^{4}+\infty$ "
(same reason as above in (b).)
The minimum is attained ot the bounding $x=1$, because there re no critical points in the domain and $f \rightarrow+\infty$ as $x \rightarrow+\infty$ and/bo $y \rightarrow \pm \infty$ (same reason as in (b).)
$f(1, y)=y^{2}+y+4$, so the minimum is attained at $\left(1,-\frac{1}{2}\right)$.

$$
\begin{aligned}
& f\left(1,-\frac{1}{2}\right)=\frac{1}{4}-\frac{1}{2}+4=\frac{15}{4} . \\
& \text { Min.volue }=\frac{15}{4}
\end{aligned}
$$

Problem 4
Suppose that $u=x+y^{2}, v=x y^{-2}$.
a) (10) Express the derivatives w_{x} and w_{y} in terms of w_{u}, w_{v} (and x and y).

$$
\begin{array}{ll}
w_{x}=w_{u} \cdot u_{x}+w_{v} \cdot v_{x} \\
w_{y}=w_{u} \cdot u_{y}+w_{v} \cdot v_{y} \\
u_{x}=1 & v_{x}=y^{-2} \\
u_{y}=2 y & v_{y}=-2 x y^{-3}
\end{array}
$$

Hence,

$$
\begin{aligned}
& W_{x}=W_{u}+y^{-2} \cdot W_{v} \\
& W_{y}=2 y \cdot W_{u}+\left(-2 x y^{-3}\right) \cdot W_{v}
\end{aligned}
$$

b) (10) Express $x w_{x}+\frac{1}{2} y w_{y}$ in terms of w_{u} and w_{v}. Write the coefficients as functions of u and v.

$$
\begin{aligned}
x w_{x}+\frac{1}{2} y \cdot w_{y} & =x \cdot w_{u}+x y^{2} w_{v}+y^{2} w_{u}-x y^{-2} w_{v}= \\
& =x \cdot w_{u}+y^{2} w_{u}=u \cdot w_{u}
\end{aligned}
$$

Problem 5
(10) Set up (but do not solve) Lagrange multiplier equations for the point of the surface $2 x^{3}-y z^{2}+x y z=4$ closest to the origin.
We want to minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$, that is the square of the distance fran the origin, subject to the constraint $g(x, y, z)=0$ where $g(x, y, z)=2 x^{3}-y z^{2}+x y z-4$.

Lagrange multiplier equations:

$$
\left\{\begin{array}{l}
\nabla f=\lambda: \nabla g \\
g=0
\end{array}\right.
$$

$$
\begin{aligned}
& \nabla f=\langle 2 x, 2 y, 2 z\rangle \\
& \nabla g=\left\langle 6 x^{2}+y z,-z^{2}+x z,-2 y z+x y\right\rangle \\
& \left\{\begin{array}{l}
2 x=\lambda\left(6 x^{2}+y z\right) \\
2 y=\lambda\left(-z^{2}+x z\right) \\
2 z=\lambda(-2 y z+x y) \\
2 x^{3}-y z^{2}+x y z-4=0
\end{array}\right.
\end{aligned}
$$

Problem 6
Suppose that $f(x, y, z)$ is a function satisfying $\nabla f=2 \hat{i}+3 \hat{j}+\hat{k}$ at $(7,-8,1)$ and that $z=z(x, y)$ is the root of the cubic equation $z^{3}+x z+y=0$. There is only one root z if $x>0$ and, in particular, at $(x, y)=(7,-8), z=1$.
(10) Let $g(x, y)=f(x, y, z(x, y))$; find ∇g at $(x, y)=(7,-8)$.

$$
\begin{aligned}
d g=d f & =f_{x} d x+f_{y} d y+f_{z} d z= \\
& =2 d x+3 d y+d z \quad \text { at }(7,-8,1) .
\end{aligned}
$$

Differentiating $x^{3}+x z+y=0$,

$$
3 z^{2} d z+x d z+z d x+d y=0
$$

At $(1,-8,1), \quad 3 \cdot(1)^{2} d z+7 d z+1 \cdot d x+d y=0$,
ot

$$
d z=-\frac{1}{10}(d x+d y)
$$

Hence, $\quad d g=2 d x+3 d y-\frac{1}{10}(d x+d y)$
and $\quad \nabla g(7,-8)=\left\langle 2-\frac{1}{10}, 3-\frac{1}{10}\right\rangle=\langle 1.9,2.9\rangle$.

