3. Double Integrals

3A. Double integrals in rectangular coordinates

a) Inner:
$$6x^2y + y^2\Big]_{y=-1}^1 = 12x^2$$
; Outer: $4x^3\Big]_0^2 = 32$.
b) Inner: $-u\cos t + \frac{1}{2}t^2\cos u\Big]_{t=0}^{\pi} = 2u + \frac{1}{2}\pi^2\cos u$
Outer: $u^2 + \frac{1}{2}\pi^2\sin u\Big]_0^{\pi/2} = (\frac{1}{2}\pi)^2 + \frac{1}{2}\pi^2 = \frac{3}{4}\pi^2$.
c) Inner: $x^2y^2\Big]_{\sqrt{x}}^{x^2} = x^6 - x^3$; Outer: $\frac{1}{7}x^7 - \frac{1}{4}x^4\Big]_0^1 = \frac{1}{7} - \frac{1}{4} = -\frac{3}{28}$
d) Inner: $v\sqrt{u^2 + 4}\Big]_0^u = u\sqrt{u^2 + 4}$; Outer: $\frac{1}{3}(u^2 + 4)^{3/2}\Big]_0^1 = \frac{1}{3}(5\sqrt{5} - 8)$

3A-1

a) (i)
$$\iint_R dy \, dx = \int_{-2}^0 \int_{-x}^2 dy \, dx$$
 (ii) $\iint_R dx \, dy = \int_0^2 \int_{-y}^0 dx \, dy$

b) i) The ends of R are at 0 and 2, since $2x - x^2 = 0$ has 0 and 2 as roots.

$$\iint_R dy dx = \int_0^z \int_0^{zx-x} dy dx$$

ii) We solve $y = 2x - x^2$ for x in terms of y: write the equation as $x^2 - 2x + y = 0$ and solve for x by the quadratic formula, getting $x = 1 \pm \sqrt{1-y}$. Note also that the maximum point of the graph is (1, 1) (it lies midway between the two roots 0 and 2). We get

$$\iint_{R} dx dy = \int_{0}^{1} \int_{1-\sqrt{1-y}}^{1+\sqrt{1-y}} dx dy,$$
c) (i)
$$\iint_{R} dy dx = \int_{0}^{\sqrt{2}} \int_{0}^{x} dy dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^{2}}} dy dx$$
(ii)
$$\iint_{R} dx dy = \int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} dx dy$$

d) Hint: First you have to find the points where the two curves intersect, by solving simultaneously $y^2 = x$ and y = x - 2 (eliminate x).

The integral $\iint_R dy \, dx$ requires two pieces; $\iint_R dx \, dy$ only one. **3A-3** a) $\iint_R x \, dA = \int_0^2 \int_0^{1-x/2} x \, dy \, dx$; Inner: $x(1 - \frac{1}{2}x)$ Outer: $\frac{1}{2}x^2 - \frac{1}{6}x^3\Big]_0^2 = \frac{4}{2} - \frac{8}{6} = \frac{2}{3}$.

b)
$$\iint_{R} (2x + y^{2}) dA = \int_{0}^{1} \int_{0}^{1-y^{2}} (2x + y^{2}) dx dy$$

Inner: $x^{2} + y^{2}x \Big]_{0}^{1-y^{2}} = 1 - y^{2};$ Outer: $y - \frac{1}{3}y^{3}\Big]_{0}^{1} = \frac{2}{3}.$
c)
$$\iint_{R} y dA = \int_{0}^{1} \int_{y-1}^{1-y} y dx dy$$

Inner: $xy \Big]_{y-1}^{1-y} = y[(1-y) - (y-1)] = 2y - 2y^{2}$ Outer: $y^{2} - \frac{2}{3}y^{3}\Big]_{0}^{1} = \frac{1}{3}.$
3A-4 a)
$$\iint_{R} \sin^{2} x dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{\cos x} \sin^{2} x dy dx$$

Inner: $y \sin^{2} x \Big]_{0}^{\cos x} = \cos x \sin^{2} x$ Outer: $\frac{1}{3} \sin^{3} x \Big] - \pi/2^{\pi/2} = \frac{1}{3}(1 - (-1)) = \frac{2}{3}.$
b)
$$\iint_{R} xy dA = \int_{0}^{1} \int_{x^{2}}^{x} (xy) dy dx.$$

Inner: $\frac{1}{2}xy^{2}\Big]_{x^{2}}^{x} = \frac{1}{2}(x^{3} - x^{5})$ Outer: $\frac{1}{2}\left(\frac{x^{4}}{4} - \frac{x^{6}}{6}\right)_{0}^{1} = \frac{1}{2} \cdot \frac{1}{12} = \frac{1}{24}.$
c) The function $x^{2} - y^{2}$ is zero on the lines $y = x$ and $y = -x$, and positive on the region R shown, lying between $x = 0$ and $x = 1$.

Therefore
Volume =
$$\iint_R (x^2 - y^2) dA = \int_0^1 \int_{-x}^x (x^2 - y^2) dy dx.$$

Inner: $x^2y - \frac{1}{3}y^3\Big]_{-x}^x = \frac{4}{3}x^3;$ Outer: $\frac{1}{3}x^4\Big]_0^1 = \frac{1}{3}.$

Inner:
$$x^2y - \frac{1}{3}y^3\Big]_{-x}^x = \frac{4}{3}x^3$$
; Outer: $\frac{1}{3}x^4\Big]_0^1 = \frac{1}{3}$.
3A-5 a) $\int_0^2 \int_x^2 e^{-y^2} dy \, dx = \int_0^2 \int_0^y e^{-y^2} dx \, dy = \int_0^2 e^{-y^2} y \, dy = -\frac{1}{2}e^{-y^2}\Big]_0^2 = \frac{1}{2}(1 - e^{-4})$
b) $\int_0^{\frac{1}{4}} \int_{\sqrt{t}}^{\frac{1}{2}} \frac{e^u}{u} \, du \, dt = \int_0^{\frac{1}{2}} \int_0^{u^2} \frac{e^u}{u} \, dt \, du = \int_0^{\frac{1}{2}} u e^u \, du = (u - 1)e^u\Big]_0^{\frac{1}{2}} = 1 - \frac{1}{2}\sqrt{e}$
c) $\int_0^1 \int_{x^{1/3}}^1 \frac{1}{1 + u^4} \, du \, dx = \int_0^1 \int_0^{u^3} \frac{1}{1 + u^4} \, dx \, du = \int_0^1 \frac{u^3}{1 + u^4} \, du = \frac{1}{4}\ln(1 + u^4)\Big]_0^1 = \frac{\ln 2}{4}$.

3A-6 0;
$$2 \iint_{S} e^{x} dA$$
, $S = \text{right half of } R$; $4 \iint_{Q} x^{2} dA$, $Q = \text{first quadrant}$
0; $4 \iint_{Q} x^{2} dA$; 0

3A-7 a)
$$x^4 + y^4 \ge 0 \Rightarrow \frac{1}{1 + x^4 + y^4} \le 1$$

b) $\iint_R \frac{x \, dA}{1 + x^2 + y^2} \le \int_0^1 \int_0^1 \frac{x}{1 + x^2} \, dx \, dy = \frac{1}{2} \ln(1 + x^2) \Big]_0^1 = \frac{\ln 2}{2} < \frac{.7}{2}.$

3B. Double Integrals in polar coordinates

3

3B-1

a) In polar coordinates, the line x = -1 becomes $r \cos \theta = -1$, or $r = -\sec \theta$. We also need the polar angle of the intersection points; since the right triangle is a 30-60-90 triangle (it has one leg 1 and hypotenuse 2), the limits are (no integrand is given):

$$\iint_R dr \, d\theta = \int_{2\pi/3}^{4\pi/3} \int_{-\sec\theta}^2 dr \, d\theta$$

c) We need the polar angle of the intersection points. To find it, we solve the two equations $r = \frac{3}{2}$ and $r = 1 - \cos\theta$ simultanously. Eliminating r, we get $\frac{3}{2} = 1 - \cos\theta$, from which $\theta = 2\pi/3$ and $4\pi/3$. Thus the limits are (no integrand is given):

$$\iint_{R} dr \, d\theta = \int_{2\pi/3}^{4\pi/3} \int_{3/2}^{1-\cos\theta} dr \, d\theta$$

d) The circle has polar equation $r = 2a \cos \theta$. The line y = a has polar equation $r \sin \theta = a$, or $r = a \csc \theta$. Thus the limits are (no integrand):

$$\iint_R dr \, d\theta = \int_{\pi/4}^{\pi/2} \int_{2a\cos\theta}^{a\csc\theta} dr \, d\theta.$$

3B-3 a) the hemisphere is the graph of $z = \sqrt{a^2 - x^2 - y^2} = \sqrt{a^2 - r^2}$, so we get

$$\iint_{R} \sqrt{a^{2} - r^{2}} \, dA = \int_{0}^{2\pi} \int_{0}^{a} \sqrt{a^{2} - r^{2}} \, r \, dr \, d\theta = 2\pi \cdot -\frac{1}{3} (a^{2} - r^{2})^{3/2} \Big]_{0}^{a} = 2\pi \cdot \frac{1}{3} a^{3} = \frac{2}{3} \pi a^{3}.$$

E. 18.02 EXERCISES

b)
$$\int_0^{\pi/2} \int_0^a (r\cos\theta)(r\sin\theta)r \, dr \, d\theta = \int_0^a r^3 \, dr \int_0^{\pi/2} \sin\theta\cos\theta \, d\theta = \frac{a^4}{4} \cdot \frac{1}{2} = \frac{a^4}{8}.$$

c) In order to be able to use the integral formulas at the beginning of 3B, we use symmetry about the y-axis to compute the volume of just the right side, and double the answer.

$$\iint_{R} \sqrt{x^{2} + y^{2}} \, dA = 2 \int_{0}^{\pi/2} \int_{0}^{2\sin\theta} r \, r \, dr \, d\theta = 2 \int_{0}^{\pi/2} \frac{1}{3} (2\sin\theta)^{3} \, d\theta$$

= $2 \cdot \frac{8}{3} \cdot \frac{2}{3} = \frac{32}{9}$, by the integral formula at the beginning of **3B**.
d) $2 \int_{0}^{\pi/2} \int_{0}^{\sqrt{\cos\theta}} r^{2} \, r \, dr \, d\theta = 2 \int_{0}^{\pi/2} \frac{1}{4} \cos^{2}\theta \, d\theta = 2 \cdot \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{8}.$

3C. Applications of Double Integration

3C-1 Placing the figure so its legs are on the positive x- and y-axes,

a) M.I.
$$= \int_{0}^{a} \int_{0}^{a-x} x^{2} dy dx$$
 Inner: $x^{2}y \Big]_{0}^{a-x} = x^{2}(a-x);$ Outer: $\frac{1}{3}x^{3}a - \frac{1}{4}x^{4} \Big]_{0}^{a} = \frac{1}{12}a^{4}.$
b) $\iint_{R} (x^{2} + y^{2}) dA = \iint_{R} x^{2} dA + \iint_{R} y^{2} dA = \frac{1}{12}a^{4} + \frac{1}{12}a^{4} = \frac{1}{6}a^{4}.$
c) Divide the triangle symmetrically into two smaller triangles, their less are $\frac{a}{a}$:

c) Divide the triangle symmetrically into two smaller triangles, their legs are $\overline{\sqrt{2}}$; Using the result of part (a), M.I. of *R* about hypotenuse $= 2 \cdot \frac{1}{12} \left(\frac{a}{\sqrt{2}}\right)^4 = \frac{a^4}{24}$

3C-2 In both cases, \bar{x} is clear by symmetry; we only need \bar{y} .

a) Mass is $\iint_R dA = \int_0^{\pi} \sin x \, dx = 2$ y-moment is $\iint_R y \, dA = \int_0^{\pi} \int_0^{\sin x} y \, dy \, dx = \frac{1}{2} \int_0^{\pi} \sin^2 x \, dx = \frac{\pi}{4}$; therefore $\bar{y} = \frac{\pi}{8}$. b) Mass is $\iint_R y \, dA = \frac{\pi}{4}$, by part (a). Using the formulas at the beginning of **3B**, y-moment is $\iint_R y^2 \, dA = \int_0^{\pi} \int_0^{\sin x} y^2 \, dy \, dx = 2 \int_0^{\pi/2} \frac{\sin^3 x}{3} \, dx = 2 \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{4}{9}$, Therefore $\bar{y} = \frac{4}{9} \cdot \frac{4}{\pi} = \frac{16}{9\pi}$.

4

3C-3 Place the segment either horizontally or vertically, so the diameter is respectively on the x or y axis. Find the moment of half the segment and double the answer.

(a) (Horizontally, using rectangular coordinates) Note that $a^2 - c^2 = b^2$.

$$\int_0^b \int_c^{\sqrt{a^2 - x^2}} y \, dy \, dx = \int_0^b \frac{1}{2} (a^2 - x^2 - c^2) \, dx = \frac{1}{2} \left[b^2 x - \frac{x^3}{3} \right]_0^b = \frac{1}{3} b^3; \quad \text{ans:} \ \frac{2}{3} b^3$$

(b) (Vertically, using polar coordinates). Note that x = c becomes $r = c \sec \theta$.

$$\text{Moment} = \int_0^\alpha \int_{c \sec \theta}^a (r \cos \theta) \, r \, dr \, d\theta \qquad \text{Inner: } \frac{1}{3}r^3 \cos \theta \Big]_{c \sec \theta}^a = \frac{1}{3}(a^3 \cos \theta - c^3 \sec^2 \theta)$$
$$\text{Outer: } \frac{1}{3} \Big[a^3 \sin \theta - c^3 \tan \theta \Big]_0^\alpha = \frac{1}{3}(a^2 b - c^2 b) = \frac{1}{3}b^3; \quad \text{ans: } \frac{2}{3}b^3.$$

3C-4 Place the sector so its vertex is at the origin and its axis of symmetry lies along the positive x-axis. By symmetry, the center of mass lies on the x-axis, so we only need find \bar{x} .

Since
$$\delta = 1$$
, the area and mass of the disc are the same: $\pi a^2 \cdot \frac{2\alpha}{2\pi} = a^2 \alpha$.
x-moment: $2 \int_0^{\alpha} \int_0^a r \cos \theta \cdot r \, dr \, d\theta$ Inner: $\frac{2}{3}r^3 \cos \theta \Big]_0^a$;
Outer: $\frac{2}{3}a^3 \sin \theta \Big]_0^{\alpha} = \frac{2}{3}a^3 \sin \alpha$ $\bar{x} = \frac{\frac{2}{3}a^3 \sin \alpha}{a^2 \alpha} = \frac{2}{3} \cdot a \cdot \frac{\sin \alpha}{\alpha}$.

3C-5 By symmetry, we use just the upper half of the loop and double the answer. The upper half lies between $\theta = 0$ and $\theta = \pi/4$.

$$2 \int_{0}^{\pi/4} \int_{0}^{a\sqrt{\cos 2\theta}} r^{2} r \, dr \, d\theta = 2 \int_{0}^{\pi/4} \frac{1}{4} a^{4} \cos^{2} 2\theta \, d\theta$$

Putting $u = 2\theta$, the above $= \frac{a^{4}}{2 \cdot 2} \int_{0}^{\pi/2} \cos^{2} u \, du = \frac{a^{4}}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi a^{4}}{16}$.

3D. Changing Variables

3D-2 Let
$$u = x + y$$
, $v = x - y$. Then $\frac{\partial(u, v)}{\partial(x, y)} = 2$; $\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{2}$

To get the uv-equation of the bottom of the triangular region:

 $y = 0 \implies u = x, v = x \implies u = v.$ $\iint_{R} \cos\left(\frac{x-y}{x+y}\right) dx dy = \frac{1}{2} \int_{0}^{2} \int_{0}^{u} \cos\frac{v}{u} dv du$ Inner: $u \sin\frac{v}{u}\Big]_{0}^{u} = u \sin 1$ Outer: $\frac{1}{2}u^{2} \sin 1\Big]_{0}^{2} = 2 \sin 1$ Ans: $\sin 1$ u = v

3D-3 Let u = x, v = 2y; $\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{vmatrix} = \frac{1}{2}$

Letting R be the elliptical region whose boundary is $x^2 + 4y^2 = 16$ in xy-coordinates, and $u^2 + v^2 = 16$ in uv-coordinates (a circular disc), we have

$$\iint_{R} (16 - x^{2} - 4y^{2}) \, dy \, dx = \frac{1}{2} \iint_{R} (16 - u^{2} - v^{2}) \, dv \, du$$
$$= \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{4} (16 - r^{2}) \, r \, dr \, d\theta = \pi \left(16 \frac{r^{2}}{2} - \frac{r^{4}}{4} \right)_{0}^{4} = 64\pi.$$

3D-4 Let u = x + y, v = 2x - 3y; then $\frac{\partial(u, v)}{\partial(x, y)} = \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} = -5$; $\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{5}$. We next express the boundary of the region R in uv-coordinates. For the x-axis, we have y = 0, so u = x, v = 2x, giving v = 2u. For the y-axis, we have x = 0, so u = y, v = -3y, giving v = -3u.

(v) 5 (v) (v

It is best to integrate first over the lines shown, v = c; this means v is held constant, i.e., we are integrating first with respect to u. This gives

$$\iint_{R} (2x - 3y)^{2} (x + y)^{2} dx \, dy = \int_{0}^{4} \int_{-v/3}^{v/2} v^{2} u^{2} \frac{du \, dv}{5}.$$

Inner: $\frac{v^{2}}{15} u^{3} \Big]_{-v/3}^{v/2} = \frac{v^{2}}{15} v^{3} \left(\frac{1}{8} - \frac{-1}{27}\right)$ Outer: $\frac{v^{6}}{6 \cdot 15} \left(\frac{1}{8} + \frac{1}{27}\right)_{0}^{4} = \frac{4^{6}}{6 \cdot 15} \left(\frac{1}{8} + \frac{1}{27}\right).$

3D-5 Let u = xy, v = y/x; in the other direction this gives $y^2 = uv$, $x^2 = u/v$.

We have
$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} y & x \\ -y/x^2 & 1/x \end{vmatrix} = \frac{2y}{x} = 2v; \quad \frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{2v}; \text{ this gives}$$

$$\int \int_{R} (x^2 + y^2) \, dx \, dy = \int_{0}^{3} \int_{1}^{2} \left(\frac{u}{v} + uv\right) \frac{1}{2v} \, dv \, du.$$

Inner: $\frac{-u}{2v} + \frac{u}{2}v \Big]_{1}^{2} = u \left(-\frac{1}{4} + 1 + \frac{1}{2} - \frac{1}{2}\right) = \frac{3u}{4}; \quad \text{Outer: } \frac{3}{8}u^2 \Big]_{0}^{3} = \frac{27}{8}.$

3D-8 a)
$$y = x^2$$
; therefore $u = x^3$, $v = x$, which gives $u = v^3$.
b) We get $\frac{u}{v} + uv = 1$, or $u = \frac{v}{v^2 + 1}$; (cf. 3D-5)