3. Double Integrals

3A. Double integrals in rectangular coordinates

3A-1
a) Inner: $\left.6 x^{2} y+y^{2}\right]_{y=-1}^{1}=12 x^{2} ; \quad$ Outer: $\left.4 x^{3}\right]_{0}^{2}=32$.
b) Inner: $\left.-u \cos t+\frac{1}{2} t^{2} \cos u\right]_{t=0}^{\pi}=2 u+\frac{1}{2} \pi^{2} \cos u$

Outer: $\left.u^{2}+\frac{1}{2} \pi^{2} \sin u\right]_{0}^{\pi / 2}=\left(\frac{1}{2} \pi\right)^{2}+\frac{1}{2} \pi^{2}=\frac{3}{4} \pi^{2}$.
c) Inner: $\left.x^{2} y^{2}\right]_{\sqrt{x}}^{x^{2}}=x^{6}-x^{3} ; \quad$ Outer: $\left.\frac{1}{7} x^{7}-\frac{1}{4} x^{4}\right]_{0}^{1}=\frac{1}{7}-\frac{1}{4}=-\frac{3}{28}$
d) Inner: $\left.v \sqrt{u^{2}+4}\right]_{0}^{u}=u \sqrt{u^{2}+4} ; \quad$ Outer: $\left.\frac{1}{3}\left(u^{2}+4\right)^{3 / 2}\right]_{0}^{1}=\frac{1}{3}(5 \sqrt{5}-8)$

3A-2

a)
(i) $\iint_{R} d y d x=\int_{-2}^{0} \int_{-x}^{2} d y d x$
(ii) $\iint_{R} d x d y=\int_{0}^{2} \int_{-y}^{0} d x d y$
b) i) The ends of R are at 0 and 2 , since $2 x-x^{2}=0$ has 0 and 2 as roots.

$$
\iint_{R} d y d x=\int_{0}^{2} \int_{0}^{2 x-x^{2}} d y d x
$$

ii) We solve $y=2 x-x^{2}$ for x in terms of y : write the equation as $x^{2}-2 x+y=0$ and solve for x by the quadratic formula, getting $x=1 \pm \sqrt{1-y}$. Note also that the maximum point of the graph is $(1,1)$ (it lies midway between the two roots 0 and 2). We get

$$
\iint_{R} d x d y=\int_{0}^{1} \int_{1-\sqrt{1-y}}^{1+\sqrt{1-y}} d x d y
$$

c)
(i) $\iint_{R} d y d x=\int_{0}^{\sqrt{2}} \int_{0}^{x} d y d x+\int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^{2}}} d y d x$
(ii) $\iint_{R} d x d y=\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} d x d y$

d) Hint: First you have to find the points where the two curves intersect, by solving simultaneously $y^{2}=x$ and $y=x-2$ (eliminate x).

The integral $\iint_{R} d y d x$ requires two pieces; $\iint_{R} d x d y$ only one.
$3 A-3 \quad$ a) $\iint_{R} x d A=\int_{0}^{2} \int_{0}^{1-x / 2} x d y d x$;
Inner: $x\left(1-\frac{1}{2} x\right) \quad$ Outer: $\left.\frac{1}{2} x^{2}-\frac{1}{6} x^{3}\right]_{0}^{2}=\frac{4}{2}-\frac{8}{6}=\frac{2}{3}$.
b) $\iint_{R}\left(2 x+y^{2}\right) d A=\int_{0}^{1} \int_{0}^{1-y^{2}}\left(2 x+y^{2}\right) d x d y$

Inner: $\left.x^{2}+y^{2} x\right]_{0}^{1-y^{2}}=1-y^{2} ; \quad$ Outer: $\left.y-\frac{1}{3} y^{3}\right]_{0}^{1}=\frac{2}{3}$.
c) $\iint_{R} y d A=\int_{0}^{1} \int_{y-1}^{1-y} y d x d y$

Inner: $x y]_{y-1}^{1-y}=y[(1-y)-(y-1)]=2 y-2 y^{2} \quad$ Outer: $\left.y^{2}-\frac{2}{3} y^{3}\right]_{0}^{1}=\frac{1}{3}$.
3A-4 a) $\iint_{R} \sin ^{2} x d A=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos x} \sin ^{2} x d y d x$
Inner: $\left.y \sin ^{2} x\right]_{0}^{\cos x}=\cos x \sin ^{2} x \quad$ Outer: $\left.\frac{1}{3} \sin ^{3} x\right]-\pi / 2^{\pi / 2}=\frac{1}{3}(1-(-1))=\frac{2}{3}$.
b) $\iint_{R} x y d A=\int_{0}^{1} \int_{x^{2}}^{x}(x y) d y d x$.

Inner: $\left.\frac{1}{2} x y^{2}\right]_{x^{2}}^{x}=\frac{1}{2}\left(x^{3}-x^{5}\right) \quad$ Outer: $\frac{1}{2}\left(\frac{x^{4}}{4}-\frac{x^{6}}{6}\right)_{0}^{1}=\frac{1}{2} \cdot \frac{1}{12}=\frac{1}{24}$.
c) The function $x^{2}-y^{2}$ is zero on the lines $y=x$ and $y=-x$, and positive on the region R shown, lying between $x=0$ and $x=1$. Therefore

Volume $=\iint_{R}\left(x^{2}-y^{2}\right) d A=\int_{0}^{1} \int_{-x}^{x}\left(x^{2}-y^{2}\right) d y d x$.
Inner: $\left.x^{2} y-\frac{1}{3} y^{3}\right]_{-x}^{x}=\frac{4}{3} x^{3} ; \quad$ Outer: $\left.\frac{1}{3} x^{4}\right]_{0}^{1}=\frac{1}{3}$.

3A-5 a) $\left.\int_{0}^{2} \int_{x}^{2} e^{-y^{2}} d y d x=\int_{0}^{2} \int_{0}^{y} e^{-y^{2}} d x d y=\int_{0}^{2} e^{-y^{2}} y d y=-\frac{1}{2} e^{-y^{2}}\right]_{0}^{2}=\frac{1}{2}\left(1-e^{-4}\right)$
b) $\left.\int_{0}^{\frac{1}{4}} \int_{\sqrt{t}}^{\frac{1}{2}} \frac{e^{u}}{u} d u d t=\int_{0}^{\frac{1}{2}} \int_{0}^{u^{2}} \frac{e^{u}}{u} d t d u=\int_{0}^{\frac{1}{2}} u e^{u} d u=(u-1) e^{u}\right]_{0}^{\frac{1}{2}}=1-\frac{1}{2} \sqrt{e}$
c) $\left.\int_{0}^{1} \int_{x^{1 / 3}}^{1} \frac{1}{1+u^{4}} d u d x=\int_{0}^{1} \int_{0}^{u^{3}} \frac{1}{1+u^{4}} d x d u=\int_{0}^{1} \frac{u^{3}}{1+u^{4}} d u=\frac{1}{4} \ln \left(1+u^{4}\right)\right]_{0}^{1}=\frac{\ln 2}{4}$.

3A-6 $\quad 0 ; \quad 2 \iint_{S} e^{x} d A, S=$ right half of $R ; \quad 4 \iint_{Q} x^{2} d A, Q=$ first quadrant $0 ; \quad 4 \iint_{Q} x^{2} d A ; \quad 0$

3A-7 a) $x^{4}+y^{4} \geq 0 \Rightarrow \frac{1}{1+x^{4}+y^{4}} \leq 1$
b) $\left.\iint_{R} \frac{x d A}{1+x^{2}+y^{2}} \leq \int_{0}^{1} \int_{0}^{1} \frac{x}{1+x^{2}} d x d y=\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}=\frac{\ln 2}{2}<\frac{7}{2}$.

3B. Double Integrals in polar coordinates

3B-1

a) In polar coordinates, the line $x=-1$ becomes $r \cos \theta=-1$, or $r=-\sec \theta$. We also need the polar angle of the intersection points; since the right triangle is a $30-60-90$ triangle (it has one leg 1 and hypotenuse 2), the limits are (no integrand is given):

$$
\iint_{R} d r d \theta=\int_{2 \pi / 3}^{4 \pi / 3} \int_{-\sec \theta}^{2} d r d \theta
$$

c) We need the polar angle of the intersection points. To find it, we solve the two equations $r=\frac{3}{2}$ and $r=1-\cos \theta$ simultanously. Eliminating r, we get $\frac{3}{2}=1-\cos \theta$, from which $\theta=2 \pi / 3$ and $4 \pi / 3$. Thus the limits are (no integrand is given):

$$
\iint_{R} d r d \theta=\int_{2 \pi / 3}^{4 \pi / 3} \int_{3 / 2}^{1-\cos \theta} d r d \theta
$$

d) The circle has polar equation $r=2 a \cos \theta$. The line $y=a$ has polar equation $r \sin \theta=a$, or $r=a \csc \theta$. Thus the limits are (no integrand):

$$
\iint_{R} d r d \theta=\int_{\pi / 4}^{\pi / 2} \int_{2 a \cos \theta}^{a \csc \theta} d r d \theta
$$

3B-2
a) $\left.\int_{0}^{\pi / 2} \int_{0}^{\sin 2 \theta} \frac{r d r d \theta}{r}=\int_{0}^{\pi / 2} \sin 2 \theta d \theta=-\frac{1}{2} \cos 2 \theta\right]_{0}^{\pi / 2}=-\frac{1}{2}(-1-1)=1$.
b) $\left.\int_{0}^{\pi / 2} \int_{0}^{a} \frac{r}{1+r^{2}} d r d \theta=\frac{\pi}{2} \cdot \frac{1}{2} \ln \left(1+r^{2}\right)\right]_{0}^{a}=\frac{\pi}{4} \ln \left(1+a^{2}\right)$.
c) $\left.\int_{0}^{\pi / 4} \int_{0}^{\sec \theta} \tan ^{2} \theta \cdot r d r d \theta=\frac{1}{2} \int_{0}^{\pi / 4} \tan ^{2} \theta \sec ^{2} \theta d \theta=\frac{1}{6} \tan ^{3} \theta\right]_{0}^{\pi / 4}=\frac{1}{6}$.
d) $\int_{0}^{\pi / 2} \int_{0}^{\sin \theta} \frac{r}{\sqrt{1-r^{2}}} d r d \theta$

Inner: $\left.-\sqrt{1-r^{2}}\right]_{0}^{\sin \theta}=1-\cos \theta \quad$ Outer: $\left.\theta-\sin \theta\right]_{0}^{\pi / 2}=\pi / 2-1$.

3B-3 a) the hemisphere is the graph of $z=\sqrt{a^{2}-x^{2}-y^{2}}=\sqrt{a^{2}-r^{2}}$, so we get

$$
\left.\iint_{R} \sqrt{a^{2}-r^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta=2 \pi \cdot-\frac{1}{3}\left(a^{2}-r^{2}\right)^{3 / 2}\right]_{0}^{a}=2 \pi \cdot \frac{1}{3} a^{3}=\frac{2}{3} \pi a^{3}
$$

b) $\int_{0}^{\pi / 2} \int_{0}^{a}(r \cos \theta)(r \sin \theta) r d r d \theta=\int_{0}^{a} r^{3} d r \int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta=\frac{a^{4}}{4} \cdot \frac{1}{2}=\frac{a^{4}}{8}$.
c) In order to be able to use the integral formulas at the beginning of 3 B , we use symmetry about the y-axis to compute the volume of just the right side, and double the answer.
$\iint_{R} \sqrt{x^{2}+y^{2}} d A=2 \int_{0}^{\pi / 2} \int_{0}^{2 \sin \theta} r r d r d \theta=2 \int_{0}^{\pi / 2} \frac{1}{3}(2 \sin \theta)^{3} d \theta$ $=2 \cdot \frac{8}{3} \cdot \frac{2}{3}=\frac{32}{9}$, by the integral formula at the beginning of $\mathbf{3 B}$.

d) $2 \int_{0}^{\pi / 2} \int_{0}^{\sqrt{\cos \theta}} r^{2} r d r d \theta=2 \int_{0}^{\pi / 2} \frac{1}{4} \cos ^{2} \theta d \theta=2 \cdot \frac{1}{4} \cdot \frac{\pi}{4}=\frac{\pi}{8}$.

3C. Applications of Double Integration

3C-1 Placing the figure so its legs are on the positive x - and y-axes,
a) M.I. $=\int_{0}^{a} \int_{0}^{a-x} x^{2} d y d x \quad$ Inner: $\left.x^{2} y\right]_{0}^{a-x}=x^{2}(a-x)$; Outer: $\left.\frac{1}{3} x^{3} a-\frac{1}{4} x^{4}\right]_{0}^{a}=\frac{1}{12} a^{4}$.
b) $\iint_{R}\left(x^{2}+y^{2}\right) d A=\iint_{R} x^{2} d A+\iint_{R} y^{2} d A=\frac{1}{12} a^{4}+\frac{1}{12} a^{4}=\frac{1}{6} a^{4}$.
c) Divide the triangle symmetrically into two smaller triangles, their legs are $\frac{a}{\sqrt{2}}$;

Using the result of part (a), M.I. of R about hypotenuse $=2 \cdot \frac{1}{12}\left(\frac{a}{\sqrt{2}}\right)^{4}=\frac{a^{4}}{24}$

3C-2 In both cases, \bar{x} is clear by symmetry; we only need \bar{y}.
a) Mass is $\iint_{R} d A=\int_{0}^{\pi} \sin x d x=2$ y-moment is $\iint_{R} y d A=\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x=\frac{1}{2} \int_{0}^{\pi} \sin ^{2} x d x=\frac{\pi}{4} ;$ therefore $\bar{y}=\frac{\pi}{8}$.
b) Mass is $\iint_{R} y d A=\frac{\pi}{4}$, by part (a). Using the formulas at the beginning of $\mathbf{3 B}$, y-moment is $\iint_{R} y^{2} d A=\int_{0}^{\pi} \int_{0}^{\sin x} y^{2} d y d x=2 \int_{0}^{\pi / 2} \frac{\sin ^{3} x}{3} d x=2 \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac{4}{9}$,

Therefore $\bar{y}=\frac{4}{9} \cdot \frac{4}{\pi}=\frac{16}{9 \pi}$.

3C-3 Place the segment either horizontally or vertically, so the diameter is respectively on the x or y axis. Find the moment of half the segment and double the answer.
(a) (Horizontally, using rectangular coordinates) Note that $a^{2}-c^{2}=b^{2}$.
$\int_{0}^{b} \int_{c}^{\sqrt{a^{2}-x^{2}}} y d y d x=\int_{0}^{b} \frac{1}{2}\left(a^{2}-x^{2}-c^{2}\right) d x=\frac{1}{2}\left[b^{2} x-\frac{x^{3}}{3}\right]_{0}^{b}=\frac{1}{3} b^{3} ; \quad$ ans: $\frac{2}{3} b^{3}$.

(b) (Vertically, using polar coordinates). Note that $x=c$ becomes $r=c \sec \theta$.

Moment $=\int_{0}^{\alpha} \int_{c \sec \theta}^{a}(r \cos \theta) r d r d \theta \quad$ Inner: $\left.\frac{1}{3} r^{3} \cos \theta\right]_{c \sec \theta}^{a}=\frac{1}{3}\left(a^{3} \cos \theta-c^{3} \sec ^{2} \theta\right)$.

Outer: $\frac{1}{3}\left[a^{3} \sin \theta-c^{3} \tan \theta\right]_{0}^{\alpha}=\frac{1}{3}\left(a^{2} b-c^{2} b\right)=\frac{1}{3} b^{3} ; \quad$ ans: $\frac{2}{3} b^{3}$.
3C-4 Place the sector so its vertex is at the origin and its axis of symmetry lies along the positive x-axis. By symmetry, the center of mass lies on the x-axis, so we only need find \vec{x}.

Since $\delta=1$, the area and mass of the disc are the same: $\pi a^{2} \cdot \frac{2 \alpha}{2 \pi}=a^{2} \alpha$. x-moment: $2 \int_{0}^{\alpha} \int_{0}^{a} r \cos \theta \cdot r d r d \theta \quad$ Inner: $\left.\frac{2}{3} r^{3} \cos \theta\right]_{0}^{a}$;

Outer: $\left.\frac{2}{3} a^{3} \sin \theta\right]_{0}^{\alpha}=\frac{2}{3} a^{3} \sin \alpha \quad \bar{x}=\frac{\frac{2}{3} a^{3} \sin \alpha}{a^{2} \alpha}=\frac{2}{3} \cdot a \cdot \frac{\sin \alpha}{\alpha}$.

3C-5 By symmetry, we use just the upper half of the loop and double the answer. The upper half lies between $\theta=0$ and $\theta=\pi / 4$.

$$
2 \int_{0}^{\pi / 4} \int_{0}^{a \sqrt{\cos 2 \theta}} r^{2} r d r d \theta=2 \int_{0}^{\pi / 4} \frac{1}{4} a^{4} \cos ^{2} 2 \theta d \theta
$$

Putting $u=2 \theta$, the above $=\frac{a^{4}}{2 \cdot 2} \int_{0}^{\pi / 2} \cos ^{2} u d u=\frac{a^{4}}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}=\frac{\pi a^{4}}{16}$.

3D. Changing Variables
3D-1 \quad Let $u=x-3 y, \quad v=2 x+y ; \quad \frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{rr}1 & -3 \\ 2 & 1\end{array}\right|=7 ; \quad \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{7}$.

$$
\iint_{R} \frac{x-3 y}{2 x+y} d x d y=\frac{1}{7} \int_{0}^{7} \int_{1}^{4} \frac{u}{v} d v d u
$$

Inner: $u \ln v]_{1}^{4}=u \ln 4 ; \quad$ Outer: $\left.\frac{1}{2} u^{2} \ln 4\right]_{0}^{7}=\frac{49 \ln 4}{2} ; \quad$ Ans: $\frac{1}{7} \frac{49 \ln 4}{2}=7 \ln 2$

3D-2 Let $u=x+y, \quad v=x-y . \quad$ Then $\quad \frac{\partial(u, v)}{\partial(x, y)}=2 ; \quad \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{2}$.
To get the $u v$-equation of the bottom of the triangular region:

$$
\begin{aligned}
& y=0 \Rightarrow u=x, v=x \Rightarrow u=v \\
& \iint_{R} \cos \left(\frac{x-y}{x+y}\right) d x d y=\frac{1}{2} \int_{0}^{2} \int_{0}^{u} \cos \frac{v}{u} d v d u
\end{aligned}
$$

Inner: $\left.u \sin \frac{v}{u}\right]_{0}^{u}=u \sin 1 \quad$ Outer: $\left.\frac{1}{2} u^{2} \sin 1\right]_{0}^{2}=2 \sin 1 \quad$ Ans: $\sin 1$

$3 D-3 \quad$ Let $u=x, v=2 y ; \quad \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}1 & 0 \\ 0 & \frac{1}{2}\end{array}\right|=\frac{1}{2}$
Letting R be the elliptical region whose boundary is $x^{2}+4 y^{2}=16$ in $x y$-coordinates, and $u^{2}+v^{2}=16$ in $u v$-coordinates (a circular disc), we have

$$
\begin{aligned}
\iint_{R}\left(16-x^{2}-4 y^{2}\right) d y d x & =\frac{1}{2} \iint_{R}\left(16-u^{2}-v^{2}\right) d v d u \\
& =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{4}\left(16-r^{2}\right) r d r d \theta=\pi\left(16 \frac{r^{2}}{2}-\frac{r^{4}}{4}\right)_{0}^{4}=64 \pi
\end{aligned}
$$

3D-4 Let $u=x+y, \quad v=2 x-3 y ;$ then $\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{rr}1 & 1 \\ 2 & -3\end{array}\right|=-5 ; \quad \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{5}$.
We next express the boundary of the region R in $u v$-coordinates.
For the x-axis, we have $y=0$, so $u=x, v=2 x$, giving $v=2 u$.
For the y-axis, we have $x=0$, so $u=y, v=-3 y$, giving $v=-3 u$.
It is best to integrate first over the lines shown, $v=c$; this means v is held constant, i.e., we are integrating first with respect to u. This gives

$$
\iint_{R}(2 x-3 y)^{2}(x+y)^{2} d x d y=\int_{0}^{4} \int_{-v / 3}^{v / 2} v^{2} u^{2} \frac{d u d v}{5}
$$

Inner: $\left.\frac{v^{2}}{15} u^{3}\right]_{-v / 3}^{v / 2}=\frac{v^{2}}{15} v^{3}\left(\frac{1}{8}-\frac{-1}{27}\right) \quad$ Outer: $\frac{v^{6}}{6 \cdot 15}\left(\frac{1}{8}+\frac{1}{27}\right)_{0}^{4}=\frac{4^{6}}{6 \cdot 15}\left(\frac{1}{8}+\frac{1}{27}\right)$.
3D-5 Let $u=x y, v=y / x$; in the other direction this gives $y^{2}=u v, x^{2}=u / v$.
We have $\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{rr}y & x \\ -y / x^{2} & 1 / x\end{array}\right|=\frac{2 y}{x}=2 v ; \quad \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{2 v} ;$ this gives

$$
\iint_{R}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{3} \int_{1}^{2}\left(\frac{u}{v}+u v\right) \frac{1}{2 v} d v d u
$$

Inner: $\left.\frac{-u}{2 v}+\frac{u}{2} v\right]_{1}^{2}=u\left(-\frac{1}{4}+1+\frac{1}{2}-\frac{1}{2}\right)=\frac{3 u}{4} ; \quad$ Outer: $\left.\frac{3}{8} u^{2}\right]_{0}^{3}=\frac{27}{8}$.

3D-8 a) $y=x^{2}$; therefore $u=x^{3}, v=x$, which gives $u=v^{3}$.
b) We get $\frac{u}{v}+u v=1$, or $u=\frac{v}{v^{2}+1} ; \quad$ (cf. 3D-5)

