18.02 Problem Set 5-Solutions of Part B

Problem 1

а) The system of equations is $\left\{\begin{aligned} z-2 x^{2}-y^{2} & =0 \\ 2(x-2) & =-4 x \lambda \\ 2(y-1) & =-2 y \lambda \\ 2(z-10) & =\lambda\end{aligned}\right.$

Let $P_{0}=(2,1,10)$ and $g(x, y, z)=z-2 x^{2}-y^{2}$.
Call $P=(x, y, z)$ a generic point. We want to minimize the distance between P and P_{0}, or equivalently $f(x, y, z)=\left|\overrightarrow{P_{0} P}\right|^{2}=(x-2)^{2}+(y-1)^{2}+(z-10)^{2}$, with the constraint $g(x, y, z)=0$.
Introducing the Lagrange multiplier λ, we obtain the following system of equations

$$
\left\{\begin{aligned}
g(x, y, z) & =0 \\
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z)
\end{aligned}\right.
$$

Computing the gradients, we have $\nabla f=\langle 2(x-2), 2(y-1), 2(z-10)\rangle$ and $\nabla g=\langle-4 x,-2 y, 1\rangle$.
b) The point $P=(x, y, z)$ has coordinates (approximated to $1 / 10000)$: $x=$ 2.1132, $y=1.0275$ and $z=9.9866$.

The coordinated of the point P computed in Problem 6b-PS4 using linear approximation were (approximately) $x=2.116, y=1.029, z=9.986$, so within $1 / 100$ of the exact answer.

Solving the system in (a), we get

$$
\left\{\begin{array}{l}
z-2 x^{2}-y^{2}=0 \\
x=\frac{2}{1+2 \lambda} \\
y=\frac{1}{1+\lambda} \\
z=\frac{20+\lambda}{2}
\end{array}\right.
$$

Substituting inside the first equation we have

$$
(20+\lambda)(1+2 \lambda)^{2}(1+\lambda)^{2}-16(1+\lambda)^{2}-2(1+2 \lambda)^{2}=0
$$

and finally

$$
4 \lambda^{5}+92 \lambda^{4}+253 \lambda^{3}+242 \lambda^{2}+81 \lambda+2=0
$$

This equation has three real solutions.

- $\lambda=0.02677$, which gives $x=2.11315, y=1.02751$ and $z=9.98661$
- $\lambda=-1.38482$, which gives $x=-1.13018, y=-2.59865$ and $z=0.30759$
- $\lambda=-19.98391$, which gives $x=-0.05132, y=-0.05268$ and $z=0.00804$

Clearly the first one corresponds to P closest to P_{0}.
The solution coming from linear approximation in Problem 6b-PS4 was $x=$ $146 / 69 \approx 2.116, y=71 / 69 \approx 1.029$ and $z=689 / 69 \approx 9.986$.

Problem 2

a) $\left(\frac{\partial w}{\partial x}\right)_{z}=f_{x}-\frac{g_{x}}{g_{y}} f_{y}$.

Instead $\left(\frac{\partial w}{\partial x}\right)_{x}$ and $\left(\frac{\partial w}{\partial x}\right)_{y}$ do not make sense.
In fact, $\left(\frac{\partial w}{\partial x}\right)_{x}$ is certainly meaningless because we cannot differentiate with respect to x if x is fixed!
Moreover, the relation $g(x, y)=c$ implies that

$$
\frac{\partial g}{\partial x} \mathrm{~d} x+\frac{\partial g}{\partial y} \mathrm{~d} y=0
$$

As a consequence, fixing x and so setting $\mathrm{d} x=0$ forces also $\mathrm{d} y$ to be zero (except in some trivial cases when $g(x, y)$ really depends only on $x)$.
Hence $\left(\frac{\partial w}{\partial x}\right)_{y}$ is meaningless too.
On the contrary, we can compute $\left(\frac{\partial w}{\partial x}\right)_{z}$ using differentials.
The relation $g(x, y)=c$ gives us

$$
\mathrm{d} y=-\frac{g_{x}}{g_{y}} \mathrm{~d} x
$$

Totally differentiating $w=f(x, y, z)$ we have

$$
\mathrm{d} w=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y+\frac{\partial f}{\partial z} \mathrm{~d} z
$$

We are keeping z fixed, so $\mathrm{d} z=0$. Substituting we obtain

$$
\mathrm{d} w=f_{x} \mathrm{~d} x-f_{y} \frac{g_{x}}{g_{y}} \mathrm{~d} x
$$

and so the result.
b) $\left(\frac{\partial w}{\partial t}\right)_{x}=x \tan (x+y)+x y$.

Totally differentiating $\sin (x+y)=4 t$ we have $\cos (x+y) \mathrm{d} x+\cos (x+y) \mathrm{d} y=4 \mathrm{~d} t$ and so $\mathrm{d} y=\frac{4}{\cos (x+y)} \mathrm{d} t$, because $\mathrm{d} x=0$.
Totally differentiating $w=x y t-2$ we get $\mathrm{d} w=y t \mathrm{~d} x+x t \mathrm{~d} y+x y \mathrm{~d} t$. Plugging the previous relation in, we obtain

$$
\mathrm{d} w=x t \frac{4}{\cos (x+y)} \mathrm{d} t+x y \mathrm{~d} t=(x \tan (x+y)+x y) \mathrm{d} t
$$

which gives our result.
c) Along the curve $\frac{\mathrm{d} z}{\mathrm{~d} y}(1,2,4)=\frac{42}{109}$.

The curve is given by the system of equations

$$
\left\{\begin{align*}
x^{3}-z y x & =-7 \tag{*}\\
x-y^{2} z+z^{3} & =49
\end{align*}\right.
$$

so the differentials $\mathrm{d} x, \mathrm{~d} y$ and $\mathrm{d} z$ along the curve satisfy the following system of linear equations

$$
\left\{\begin{array}{cccccccc}
\left(3 x^{2}-y z\right) & \mathrm{d} x & -x z & \mathrm{~d} y & - & x y & \mathrm{~d} z=0 \\
& \mathrm{~d} x & - & 2 y z & \mathrm{~d} y & + & \left(3 z^{2}-y^{2}\right) & \mathrm{d} z=0
\end{array}\right.
$$

obtained by totally differentiating $(*)$.
From the second equation we can extract $\mathrm{d} x$:

$$
\mathrm{d} x=(2 y z) \mathrm{d} y+\left(y^{2}-3 z^{2}\right) \mathrm{d} z
$$

Plugging it into the first equation we get

$$
\begin{gathered}
\left(3 x^{2}-y z\right)\left[(2 y z) \mathrm{d} y+\left(y^{2}-3 z^{2}\right) \mathrm{d} z\right]-x z \mathrm{~d} y-x y \mathrm{~d} z=0 \\
\left(6 x^{2} y z-2 y^{2} z^{2}-x z\right) \mathrm{d} y+\left(3 x^{2} y^{2}-9 x^{2} z^{2}+3 y z^{3}-y^{3} z-x y\right) \mathrm{d} z=0
\end{gathered}
$$

Setting $x=1, y=2$ and $z=4$ we obtain

$$
\begin{gathered}
\left(6 \cdot 2 \cdot 4-2 \cdot 2^{2} \cdot 4^{2}-4\right) \mathrm{d} y+\left(3 \cdot 2^{2}-9 \cdot 4^{2}+3 \cdot 2 \cdot 4^{3}-2^{3} \cdot 4-2\right) \mathrm{d} z=0 \\
(48-128-4) \mathrm{d} y+(12-144+384-32-2) \mathrm{d} z=0 \\
-84 \mathrm{~d} y+218 \mathrm{~d} z=0
\end{gathered}
$$

from which we conclude that $\frac{\mathrm{d} z}{\mathrm{~d} y}(1,2,4)=\frac{42}{109}$ along the curve.

