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18.02 Problem Set 5 - Solutions of Part B 

Problem 1 

⎧ z − 2x2 − y2 
� 

= 0 
⎧ 

a) The system of equations is 
� 

⎧ 
2(x − 2) 
2(y − 1) 

= 
= 

−4x� 
−2y� 

⎧ 
� 

2(z − 10) = � 
2Let P0 = (2, 1, 10) and g(x, y, z) = z − 2x2 − y .


Call P = (x, y, z) a generic point. We want to minimize the distance between

−−� 

P and P0, or equivalently f(x, y, z) = |P0P |2 = (x − 2)2 + (y − 1)2 + (z − 10)2 ,

with the constraint g(x, y, z) = 0.

Introducing the Lagrange multiplier �, we obtain the following system of equa

tions 

⎪

g(x, y, z) = 0 

∗f(x, y, z) = �∗g(x, y, z) 

Computing the gradients, we have ∗f = ≈2(x − 2), 2(y − 1), 2(z − 10)→ and

∗g = ≈−4x, −2y, 1→.


b) The point P = (x, y, z) has coordinates (approximated to 1/10000): x =

2.1132, y = 1.0275 and z = 9.9866.

The coordinated of the point P computed in Problem 6b - PS4 using linear ap

proximation were (approximately) x = 2.116, y = 1.029, z = 9.986, so within

1/100 of the exact answer.


Solving the system in (a), we get


⎧ z − 2x 2 − y 2 = 0 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 2 
⎧ 
⎧x = 
⎧ 
� 1 + 2� 

1 
⎧ 
⎧y = 
⎧ 
⎧ 1 + � 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 20 + � 

z = 
2 

Substituting inside the first equation we have 

(20 + �)(1 + 2�)2(1 + �)2 − 16(1 + �)2 − 2(1 + 2�)2 = 0 

and finally 
4�5 + 92�4 + 253�3 + 242�2 + 81� + 2 = 0 

This equation has three real solutions. 
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• � = 0.02677, which gives x = 2.11315, y = 1.02751 and z = 9.98661 

• � = −1.38482, which gives x = −1.13018, y = −2.59865 and z = 0.30759 

• � = −19.98391, which gives x = −0.05132, y = −0.05268 and z = 0.00804 

Clearly the first one corresponds to P closest to P0.

The solution coming from linear approximation in Problem 6b - PS4 was x =

146/69 � 2.116, y = 71/69 � 1.029 and z = 689/69 � 9.986.


Problem 2 
⎨ ⎩ 

�w gx
a) = fx − fy. 

�x gy 
⎨ z 

⎩ ⎨ ⎩ 
�w �w 

Instead and do not make sense. 
�x �x 

x y 
⎨ ⎩ 

�w 
In fact, is certainly meaningless because we cannot differentiate with 

�x 
x 

respect to x if x is fixed!

Moreover, the relation g(x, y) = c implies that


�g �g 
dx + dy = 0 

�x �y 

As a consequence, fixing x and so setting dx = 0 forces also dy to be zero (except 
in some trivial cases when g(x, y) really depends only on x). 

⎨ ⎩ 
�w 

Hence is meaningless too. 
�x 

y 
⎨ ⎩ 

�w 
On the contrary, we can compute using differentials. 

�x 
z 

The relation g(x, y) = c gives us 

gx
dy = − dx 

gy 

Totally differentiating w = f(x, y, z) we have 

�f �f �f 
dw = dx + dy + dz 

�x �y �z 

We are keeping z fixed, so dz = 0. Substituting we obtain 

gx
dw = fxdx − fy dx 

gy 

and so the result. 
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(�) 

⎨ ⎩ 
�w 

b) = x tan(x + y) + xy. 
�t 

x 

Totally differentiating sin(x + y) = 4t we have cos(x + y)dx + cos(x + y)dy = 4dt 
4 

and so dy = dt, because dx = 0. 
cos(x + y) 

Totally differentiating w = xyt − 2 we get dw = ytdx + xtdy + xydt. Plugging 
the previous relation in, we obtain 

4 
dw = xt dt + xydt = (x tan(x + y) + xy) dt 

cos(x + y) 

which gives our result. 

dz 42 
c) Along the curve (1, 2, 4) = . 

dy 109 

The curve is given by the system of equations 
⎪ 

x3 − zyx = −7 
3x − y2z + z = 49 

so the differentials dx, dy and dz along the curve satisfy the following system 
of linear equations 

⎪ 
(3x2 − yz) dx − xz dy − xy dz = 0 

dx − 2yz dy + (3z2 − y2) dz = 0 

obtained by totally differentiating (�). 
From the second equation we can extract dx: 

2dx = (2yz)dy + (y 2 − 3z )dz 

Plugging it into the first equation we get 

2(3x 2 − yz)[(2yz)dy + (y 2 − 3z )dz] − xzdy − xydz = 0 
2 2 2 3(6x 2 yz − 2y z 2 − xz)dy + (3x y 2 − 9x z 2 + 3yz 3 − y z − xy)dz = 0 

Setting x = 1, y = 2 and z = 4 we obtain 

(6 · 2 · 4 − 2 · 22 · 42 − 4)dy + (3 · 22 − 9 · 42 + 3 · 2 · 43 − 23 · 4 − 2)dz = 0 

(48 − 128 − 4)dy + (12 − 144 + 384 − 32 − 2)dz = 0 

−84dy + 218dz = 0 

dz 42 
from which we conclude that (1, 2, 4) = along the curve. 

dy 109 
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