### 18.02 Problem Set 4 - Solutions of Part B

## Problem 1

a) The critical points are $P=\left(\frac{1}{3}, \frac{2}{3}\right)$ and $Q=\left(\frac{3}{2}, \frac{5}{4}\right)$.

In fact $\frac{\partial f}{\partial x}=3 x^{2}-6 x+y+1$ and $\frac{\partial f}{\partial y}=x-2 y+1$.
The critical points are obtained setting $f_{x}=f_{y}=0$.
$\frac{\partial f}{\partial y}=0$ gives $y=\frac{x+1}{2}$.
Substituting inside $\frac{\partial f}{\partial x}=0$ we get $6 x^{2}-11 x+3=0$, which has two solutions: $x=1 / 3 ; 3 / 2$.
Hence we get two critical points: $P=(1 / 3,2 / 3)$ and $Q=(3 / 2,5 / 4)$, which belong both to the square $S$.
b) The points of $S$ where $f$ attains its maximum or its minimum can be either the critical points found in (a) or points in the boundary of $S$.
c) The maximum of $f$ is $\frac{13}{27}$, attained at $P=\left(\frac{1}{3}, \frac{2}{3}\right)$.

The minimum of $f$ is $-1-\frac{4}{3} \sqrt{\frac{2}{3}}$, attained at $\left(1+\sqrt{\frac{2}{3}}, 0\right)$.
Evaluating $f$ at the critical points, we find $f(P)=f(1 / 3,2 / 3)=13 / 27$ and $f(Q)=f(3 / 2,5 / 4)=-5 / 16$.

Now we analyze what happens at the boundary.
$y=0$ In this case we want to find minimum and maximum value of the function $f(x, 0)=x^{3}-3 x^{2}+x$ with $0 \leq x \leq 2$.
Its values at the extremal points are $f(0,0)=0$ and $f(2,0)=-2$.
$\frac{\mathrm{d} f(x, 0)}{\mathrm{d} x}=3 x^{2}-6 x+1$, which vanishes at $1 \pm \sqrt{\frac{2}{3}}$.
Substituting we get $f\left(1-\sqrt{\frac{2}{3}}, 0\right)=-1+\frac{4}{3} \sqrt{\frac{2}{3}}$ and $f\left(1+\sqrt{\frac{2}{3}}, 0\right)=$ $-1-\frac{4}{3} \sqrt{\frac{2}{3}}$.
$y=2$ In this case we have to analyze $f(x, 2)=x^{3}-3 x^{2}+3 x-2=(x-1)^{3}-1$, with $0 \leq x \leq 2$.

It is immediate to realize that the minimum can only be at $f(0,2)=-2$ and the maximum at $f(2,2)=0$.
$x=0$ In this case we have to analyze $f(0, y)=-y^{2}+y=-y(y-1)$ with $0 \leq y \leq 2$.
Hence the maximum can only be at $f(0,1 / 2)=1 / 4$ and the minimum at $f(0,2)=-2$.
$x=2$ In this case we have to analyze $f(2, y)=-y^{2}+3 y-2=-(y-1)(y-2)$ with $0 \leq y \leq 2$.
Hence the minimum can only be at $f(2,0)=-2$ and the maximum at $f(2,3 / 2)=1 / 4$.

Comparing the values that $f$ attains at the previous points, we get our result.
d) The point $P=\left(\frac{1}{3}, \frac{2}{3}\right)$ is a local maximum; the point $Q=\left(\frac{3}{2}, \frac{5}{4}\right)$ is a saddle point.

In fact $f_{x x}=6 x-6, f_{x y}=f_{y x}=1$ and $f_{y y}=-2$.
Hence the discriminant is $\Delta(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=11-12 x$.
$\Delta(Q)=-7<0$, so that $Q$ is a saddle point.
$\Delta(P)=7>0$, so that $P$ is either a local maximum or a local minimum. In fact $P$ is a local maximum because $f_{y y}(P)=-2<0$ (and equivalently $\left.f_{x x}(P)=-4<0\right)$.


The picture above represents a sketch of the level curves of $f$ around the critical points $P$ and $Q$.
e) After (d), we can only say that $(3 / 2,5 / 4)$ is neither a local minimum nor a local maximum and so the minimum of $f$ is attained at the boundary. Hence we could have avoided to evaluate $f$ at $(3 / 2,5 / 4)$.

## Problem 2

a) At the point $(1,1 / 2)$ we have $f_{x}(1,1 / 2)<0$ and $f_{y}(1,1 / 2)>0$. At the point $(1,1)$ we have $f_{x}(1,1)<0$ and $f_{y}(1,1)=0$.


The part of the contour line through $(1,1)$ on which $f_{x}<0$ is the one emphasized in the picture above.
b) At $(1,1 / 2)$ we have $f_{x}(1,1 / 2)=-3 / 2$ and $f_{y}(1,1 / 2)=1$.

At $(1,1)$ we have $f_{x}(1,1)=-1$ and $f_{y}(1,1)=0$.
It is sufficient to plug $(1,1 / 2)$ and $(1,1)$ inside $f_{x}(x, y)=3 x^{2}-6 x+y-1$ and $f_{y}(x, y)=x-2 y+1$ obtained in (a).
c) Using "Level curves".

The saddle is approximately at $(1.5,1.2)$ and $f(1.5,1.2) \approx-0.32$.
The maximum is attained approximately at $(0.4,0.7)$ and $f(0.4,0.7) \approx 0.48$.
The minimum is attained approximately at $(1.8,0)$ and $f(0.8,0) \approx-2.09$.
d) Using "Partial derivatives".

The maximum is approximately at $(0.34,0.67)$.
The level curve through it reduces to a point.
If I move in any direction, then the value of $f$ decreases (it's a maximum!).
The saddle is approximately at $(1.5,1.25)$. The level curve through it is made of two branches that meet transversely.
If I move towards East or West, then the value of $f$ increases.
If I move towards North or South, then the value of $f$ decreases.

## Problem 3

a) $\mathrm{d} R=\rho\left(\frac{\mathrm{d} L}{S}-\frac{L \mathrm{~d} S}{S^{2}}\right)=R\left(\frac{\mathrm{~d} L}{L}-\frac{\mathrm{d} S}{S}\right)$.
b) Using linear approximation, the new resistance $R^{\prime}$ is $R^{\prime} \approx 1.425 \mathrm{ohm}$.

The exact calculation gives $R^{\prime}=63 / 44 \approx 1.4318$ ohm.
In fact the first order approximation gives $\Delta R \approx R\left(\frac{5}{100}-\frac{0.1}{1}\right)=-0.075$, so that $R^{\prime}=R+\Delta R \approx 1.5-0.075=1.425$.
To exactly compute the resistance, we notice that $\rho=R S / L$. Hence $R^{\prime}=$ $\rho \frac{L^{\prime}}{S^{\prime}}=R \frac{L^{\prime}}{L} \frac{S}{S^{\prime}}=1.5 \frac{105}{100} \frac{1}{1.1}=\frac{63}{44} \approx 1.4318$.

## Problem 4

a) $\binom{w_{r}}{w_{\theta}}=\left(\begin{array}{ll}x_{r} & y_{r} \\ x_{\theta} & y_{\theta}\end{array}\right)\binom{w_{x}}{w_{y}}$, so $A=\left(\begin{array}{ll}x_{r} & y_{r} \\ x_{\theta} & y_{\theta}\end{array}\right)$.

Just put

$$
\begin{aligned}
& \frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \\
& \frac{\partial w}{\partial \theta}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial \theta}
\end{aligned}
$$

in matrix form.
b) $A=\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -r \sin (\theta) & r \cos (\theta)\end{array}\right)$.

Just differentiate $x(r, \theta)=r \cos (\theta)$ and $y(r, \theta)=r \sin (\theta)$ with respect to $r$ and $\theta$ and use (a).
c) $\binom{u_{x}}{u_{y}}=\left(\begin{array}{cc}r_{x} & \theta_{x} \\ r_{y} & \theta_{y}\end{array}\right)\binom{u_{r}}{u_{\theta}}=\left(\begin{array}{cc}\frac{x}{\sqrt{x^{2}+y^{2}}} & -\frac{y}{x^{2}+y^{2}} \\ \frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{x}{x^{2}+y^{2}}\end{array}\right)\binom{u_{r}}{u_{\theta}}$.

So $B=\left(\begin{array}{cc}\frac{x}{\sqrt{x^{2}+y^{2}}} & -\frac{y}{x^{2}+y^{2}} \\ \frac{y}{\sqrt{x^{2}+y^{2}}} & \frac{x}{x^{2}+y^{2}}\end{array}\right)$.
d) $A^{-1}=\left(\begin{array}{cc}\cos (\theta) & -\frac{1}{r} \sin (\theta) \\ \sin (\theta) & \frac{1}{r} \cos (\theta)\end{array}\right)=\left(\begin{array}{cc}\frac{x}{\sqrt{x^{2}+y^{2}}} & -\frac{y}{x^{2}+y^{2}} \\ \frac{y}{\sqrt{x^{2}+y^{2}}} & \frac{x}{x^{2}+y^{2}}\end{array}\right)=B$.

Straightforward computation, using that $\operatorname{det}(A)=r=\sqrt{x^{2}+y^{2}}$.
e) At $r=5, \theta=-\pi / 2$ we have $u_{x}=4$ and $u_{y}=-1$.

In fact, the point $r=5, \theta=-\pi / 2$ has Cartesian coordinates $x=0, y=-5$.
Hence $u_{x}=\frac{x}{r} u_{r}+\left(-\frac{y}{r^{2}}\right) u_{\theta}=-\left(\frac{-5}{5^{2}}\right) 20=4$ and $u_{y}=\frac{y}{r} u_{r}+\frac{x}{r^{2}} u_{\theta}=\frac{-5}{5} 1=$ -1 .

## Problem 5

a) Maximum of $\left.\frac{\mathrm{d} f}{\mathrm{~d} s}\right|_{\hat{\mathbf{u}}}(1,1 / 2)=\frac{\sqrt{13}}{2}$.

Minimum of $\left.\frac{\mathrm{d} f}{\mathrm{~d} s}\right|_{\hat{\mathbf{u}}}(1,1 / 2)=-\frac{\sqrt{13}}{2}$.
In fact, the maximum of the directional derivative is attained in direction of the gradient (and the minimum in the opposite direction). Hence, to achieve the maximum we have to set $\hat{\mathbf{u}}=\frac{\nabla f(1,1 / 2)}{|\nabla f(1,1 / 2)|}$. Moreover $\left.\frac{\mathrm{d} f}{\mathrm{~d} s}\right|_{\hat{\mathbf{u}}}=\nabla f \cdot \hat{\mathbf{u}}$.
As a consequence the maximum is $\left.\frac{\mathrm{d} f}{\mathrm{~d} s}\right|_{\hat{\mathbf{u}}}=\nabla f \cdot \frac{\nabla f}{|\nabla f|}=|\nabla f|$. Evaluating the gradient at $(1,1 / 2)$ we get $\nabla f(1,1 / 2)=\langle-3 / 2,1\rangle$ and $|\nabla f(1,1 / 2)|=\frac{\sqrt{13}}{2}$. Hence the minimum of the directional derivative is $-|\nabla f(1,1 / 2)|$.
b) The maximum occurs at $\hat{\mathbf{u}}=\frac{\langle-3,2\rangle}{\sqrt{13}}$ and the minimum occurs at $\hat{\mathbf{u}}=\frac{\langle 3,-2\rangle}{\sqrt{13}}$.
As discussed in (a), the maximum is achieved at $\hat{\mathbf{u}}=\frac{\nabla f(1,1 / 2)}{|\nabla f(1,1 / 2)|}$ and the minimum at $\hat{\mathbf{u}}=-\frac{\nabla f(1,1 / 2)}{|\nabla f(1,1 / 2)|}$.
c) The directional derivative is zero for $\hat{\mathbf{u}}= \pm \frac{\langle 2,3\rangle}{\sqrt{13}}$.

In fact the directional derivative vanishes in directions perpendicular to the gradient (and so tangential to the level curves). Hence it is sufficient to rotate the direction of the gradient of $\pm \pi / 2$.
d) We have used the point $(x, y)=(1.01,0.5)$.

The maximum of the directional derivative is approximately 1.8 and it is attained at $\theta=145^{\circ}$ or $\theta=146^{\circ}$ or $\theta=148^{\circ}$.
The yellow half-line (direction $\hat{\mathbf{u}}$ ) points in the same direction as the purple half-line (the gradient) and both are perpendicular to the blue level curve passing through the point.

The minimum is approximately -1.8 and it is attained at $\theta=324^{\circ}$ or $\theta=326^{\circ}$. The yellow half-line is in the opposite direction than the purple one, and both are perpendicular to the blue level curve passing through the point.

The directional derivative is approximately zero at $\theta=236^{\circ}$ (where it takes value -0.00533 ) and $\theta=56^{\circ}$ (where it takes value -0.00533 ).

The yellow half-line is tangent to blue level curve through the point and perpendicular to the purple half-line.

## Problem 6

a) The direction is $\hat{\mathbf{u}}=\frac{\langle 8,2,-1\rangle}{\sqrt{69}}$.

In fact the direction of fastest decrease is $\hat{\mathbf{u}}=\frac{\nabla g(2,1,10)}{|\nabla g(2,1,10)|}$ and $\nabla g(x, y, z)=$ $\langle-4 x,-2 y, 1\rangle$, so that $\nabla g(2,1,10)=\langle-8,-2,1\rangle$.
b) Using linear approximation, we find that the point is

$$
P=\left(2+\frac{8}{69}, 1+\frac{2}{69}, 10-\frac{1}{69}\right)=\left(\frac{146}{69}, \frac{71}{69}, \frac{689}{69}\right)
$$

The exact value of $g$ at $p$ is $g(P)=-\frac{44}{1587} \approx-0.028$.
The value of $g$ at $P_{0}=(2,1,10)$ is $g\left(P_{0}\right)=10-2 \cdot 2^{2}-1^{2}=1$.
If we move from $P_{0}$ in direction $-\nabla g\left(P_{0}\right)$, we end up at the point $P=P_{0}-$ $s \nabla g\left(P_{0}\right)$ with $s \geq 0$.
Hence the problem is: find $s \geq 0$ such that $g\left(P_{0}-s \nabla g\left(P_{0}\right)\right)=0$.
Using linear approximation, we have

$$
\begin{aligned}
g\left(P_{0}-s \nabla g\left(P_{0}\right)\right) & \approx g\left(P_{0}\right)+g_{x}\left(P_{0}\right) \Delta x+g_{y}\left(P_{0}\right) \Delta y+g_{z}\left(P_{0}\right) \Delta z= \\
& =g\left(P_{0}\right)+g_{x}\left(P_{0}\right)\left[-s g_{x}\left(P_{0}\right)\right]+g_{y}\left(P_{0}\right)\left[-s g_{y}\left(P_{0}\right)\right]+g_{z}\left(P_{0}\right)\left[-s g_{z}\left(P_{0}\right)\right]= \\
& =g\left(P_{0}\right)+\nabla g\left(P_{0}\right) \cdot\left(-s \nabla g\left(P_{0}\right)\right)=g\left(P_{0}\right)-s\left|\nabla g\left(P_{0}\right)\right|^{2} .
\end{aligned}
$$

Hence we obtain $s=\frac{g\left(P_{0}\right)}{\left|\nabla g\left(P_{0}\right)\right|^{2}}=\frac{1}{69}$ and so $P=P_{0}-s \nabla g\left(P_{0}\right)=(2,1,10)-$
$\frac{1}{69}\langle-8,-2,1\rangle=\left(2+\frac{8}{69}, 1+\frac{2}{69}, 10-\frac{1}{69}\right)$.
Using a calculator we get the exact value $g(P)=-\frac{44}{1587} \approx-0.028$.

