18.02 Problem Set 6 - Solutions of Part B

Problem 1

a) The parametric equations are $\left\{\begin{array}{l}x=x_{0}+\frac{a}{c} \Delta z \\ y=y_{0}+\frac{b}{c} \Delta z \\ z=z_{0}+\Delta z\end{array}\right.$

The condition is $c \neq 0$.

In fact, the standard parametric equations (with parameter t) would be

$$
P(t)=P_{0}+t \overrightarrow{\mathbf{v}}, \text { that is in components }\left\{\begin{array}{l}
x(t)=x_{0}+t a \\
y(t)=y_{0}+t b \\
z(t)=z_{0}+t c
\end{array} .\right.
$$

From the third equation, if $c \neq 0$, we get $t=\frac{\Delta z}{c}$.
b) $\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta z}=\left\langle\frac{a}{c}, \frac{b}{c}, 1\right\rangle$ and $\frac{\mathrm{d} \overrightarrow{\mathbf{r}}}{\mathrm{d} z}\left(P_{0}\right)=\left\langle\frac{a}{c}, \frac{b}{c}, 1\right\rangle$.

In fact, $\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta z}=\left\langle\frac{\Delta x}{\Delta z}, \frac{\Delta y}{\Delta z}, \frac{\Delta z}{\Delta z}\right\rangle=\left\langle\frac{a}{c}, \frac{b}{c}, 1\right\rangle$.
Being constant, $\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta z}$ coincides with the derivative $\frac{\mathrm{d} \overrightarrow{\mathbf{r}}}{\mathrm{d} z}$ along the line at any point of the line.
c) Parametric equations $\left\{\begin{array}{l}x(t)=1-4 t \\ y(t)=1-5 t \\ z(t)=1-t\end{array}\right.$
i) $\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial z}\right)_{u, v}=\langle 4,5,1\rangle$
ii) $\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial y}\right)_{u, v}=\left\langle\frac{4}{5}, 1, \frac{1}{5}\right\rangle$
iii) $\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial x}\right)_{u, v}=\left\langle 1, \frac{5}{4}, \frac{1}{4}\right\rangle$

In fact, $\langle 1,-1,1\rangle$ is a normal vector to any plane given by $u=x-y+z=c_{1}$ and $\langle-2,1,3\rangle$ is a normal vector to any plane given by $v=-2 x+y+3 z=c_{2}$. Hence, their intersection is a line parallel to the vector
$\langle 1,-1,1\rangle \times\langle-2,1,3\rangle=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 1 \\ -2 & 1 & 3\end{array}\right|=-4 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and the parametric equation is $P(t)=(1,1,1)+t\langle-4,-5,-1\rangle$.
Following (b), we obtain $\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta z}=\langle 4,5,1\rangle, \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta y}=\left\langle\frac{4}{5}, 1, \frac{1}{5}\right\rangle$ and $\frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta x}=\left\langle 1, \frac{5}{4}, \frac{1}{4}\right\rangle$,
which hold along the line $\left\{\begin{array}{l}u=1 \\ v=2\end{array}\right.$ (and, in fact, along any line obtained intersecting a plane $u=c_{1}$ and a plane $v=c_{2}$).
This means that $\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial z}\right)_{u, v}=\langle 4,5,1\rangle,\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial y}\right)_{u, v}=\left\langle\frac{4}{5}, 1, \frac{1}{5}\right\rangle$ and $\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial x}\right)_{u, v}=$ $\left\langle 1, \frac{5}{4}, \frac{1}{4}\right\rangle$.
d) The lines are all parallel (because they are parallel to $\langle-4,-5,-1\rangle$).

Given a curve C a point P on it, the derivative $\frac{\mathrm{d} x}{\mathrm{~d} z}(P)$ is the rate of change of x with respect to z along C (in other words, it is also the slope of the curve obtained by projecting C onto the $x z$-plane).
In our case, the derivative $\frac{\mathrm{d} x}{\mathrm{~d} z}$ along a line $\left\{\begin{array}{l}u=c_{1} \\ v=c_{2}\end{array} \quad\right.$ coincides with $\left(\frac{\partial x}{\partial z}\right)_{u, v}$, so that the derivative $\frac{\mathrm{d} x}{\mathrm{~d} z}=\left(\frac{\partial x}{\partial z}\right)_{u, v}$ is constant along the line.
Moreover, if we vary c_{1} and c_{2}, we obtain parallel lines, so $\Delta z / \Delta x$ will be the same at any point (in other words, their projections will have the same slope). An analogous argument shows that the other derivatives $\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial x}\right)_{u, v},\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial y}\right)_{u, v}$ and $\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial z}\right)_{u, v}$ are constant.
e) $\left(\frac{\partial w}{\partial x}\right)_{u, v}=\nabla w \cdot\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial x}\right)_{u, v}=f_{x}+\frac{5}{4} f_{y}+\frac{1}{4} f_{z}$

$$
\begin{aligned}
& \left(\frac{\partial w}{\partial y}\right)_{u, v}=\nabla w \cdot\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial y}\right)_{u, v}=\frac{4}{5} f_{x}+f_{y}+\frac{1}{5} f_{z} \\
& \left(\frac{\partial w}{\partial z}\right)_{u, v}=\nabla w \cdot\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial z}\right)_{u, v}=4 f_{x}+5 f_{y}+f_{z}
\end{aligned}
$$

In fact, using the chain rule $\left(\frac{\partial w}{\partial x}\right)_{u, v}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\left(\frac{\partial y}{\partial x}\right)_{u, v}+\frac{\partial f}{\partial z}\left(\frac{\partial z}{\partial x}\right)=$ $=\nabla w \cdot\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial x}\right)_{u, v}=\nabla w \cdot\left\langle 1, \frac{5}{4}, \frac{1}{4}\right\rangle=f_{x}+\frac{5}{4} f_{y}+\frac{1}{4} f_{z}$.

Similarly for the other derivatives.
f) A tangent vector to the curve at $(1,2,4)$ is $\overrightarrow{\mathbf{v}}=\langle-208,218,84\rangle$.

Along the curve, $\frac{\mathrm{d} w}{\mathrm{~d} z}(1,2,4)=-\frac{52}{21} f_{x}+\frac{109}{42} f_{y}+f_{z}$ and
$\frac{\mathrm{d} w}{\mathrm{~d} x}(1,2,4)=f_{x}-\frac{109}{104} f_{y}-\frac{21}{52} f_{z}$.
If P is any point on the curve, then the derivative $\frac{\mathrm{d} w}{\mathrm{~d} x}(P)$ along the curve coincides with $\left(\frac{\partial w}{\partial x}\right)_{w_{1}, w_{2}}(P)$ and $\frac{\mathrm{d} w}{\mathrm{~d} z}(P)$ along the curve coincides with $\left(\frac{\partial w}{\partial z}\right)_{w_{1}, w_{2}}(P)$.

In fact, $\nabla w_{1}=\left\langle 3 x^{2}-y z,-x z,-x y\right\rangle$ and $\nabla w_{2}=\left\langle 1,-2 y z,-y^{2}+3 z^{2}\right\rangle$.
At $(1,2,4)$ we find $\nabla w_{1}(1,2,4)=\langle-5,-4,-2\rangle$ and $\nabla w_{2}(1,2,4)=\langle 1,-16,44\rangle$.
Hence a vector parallel to the curve $\left\{\begin{array}{l}w_{1}=-7 \\ w_{2}=49\end{array}\right.$ at $(1,2,4)$ is
$\langle-5,-4,-2\rangle \times\langle 1,-16,44\rangle=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -5 & -4 & -2 \\ 1 & -16 & 44\end{array}\right|=-208 \hat{\mathbf{i}}+218 \hat{\mathbf{j}}+84 \hat{\mathbf{k}}$.
Therefore, along the curve we have $\frac{\mathrm{d} w}{\mathrm{~d} z}(1,2,4)=f_{x}(1,2,4) \frac{-208}{84}+f_{y}(1,2,4) \frac{218}{84}+$
$f_{z}(1,2,4)$ and $\frac{\mathrm{d} w}{\mathrm{~d} x}(1,2,4)=f_{x}(1,2,4)+f_{y}(1,2,4) \frac{218}{-208}+\frac{84}{-208} f_{z}(1,2,4)$.

Problem 2

a) Let $(0,0),\left(x_{0}, 0\right),\left(x_{0}, y_{0}\right),\left(0, y_{0}\right)$ be the vertices of the rectangular base. The volume of the prism is
$V=\int_{0}^{y_{0}} \int_{0}^{x_{0}} z \mathrm{~d} x \mathrm{~d} y=\int_{0}^{y_{0}} \int_{0}^{x_{0}}(a x+b y+c) \mathrm{d} x \mathrm{~d} y=\int_{0}^{y_{0}}\left[\frac{a}{2} x^{2}+b x y+c x\right]_{0}^{x_{0}} \mathrm{~d} y=$
$\int_{0}^{y_{0}} \frac{a}{2} x_{0}^{2}+b x_{0} y+c x_{0} \mathrm{~d} y=\left[\frac{a}{2} x_{0}^{2} y+\frac{b}{2} x_{0} y^{2}+c x_{0} y\right]_{0}^{y_{0}}=x_{0} y_{0} \frac{a x_{0}+b y_{0}+2 c}{2}$.
The lengths of the four vertical edges are: $z(0,0)=c, z\left(x_{0}, 0\right)=a x_{0}+c$, $z\left(x_{0}, y_{0}\right)=a x_{0}+b y_{0}+c$ and $z\left(0, y_{0}\right)=b y_{0}+c$.
Hence the average of the lengths of the four vertical edges is $\ell=\frac{c+\left(a x_{0}+c\right)+\left(a x_{0}+b y_{0}+c\right)+\left(b y_{0}+c\right)}{4}=\frac{2 c+a x_{0}+b y_{0}}{2}$.
The area of the base is clearly $A=x_{0} y_{0}$.
Therefore $V=A \cdot \ell$.

Problem 3

a) $\int_{1}^{a} e^{-x y} \mathrm{~d} y=\left[\frac{e^{-x y}}{-x}\right]_{y=1}^{y=a}=\frac{e^{-x}-e^{-a x}}{x}$
b) $\int_{0}^{+\infty} \frac{e^{-x}-e^{-a x}}{x} \mathrm{~d} x=\int_{0}^{+\infty} \int_{1}^{a} e^{-x y} \mathrm{~d} y \mathrm{~d} x=\int_{1}^{a} \int_{0}^{+\infty} e^{-x y} \mathrm{~d} x \mathrm{~d} y=$
$=\int_{1}^{a}\left[\frac{e^{-x y}}{-y}\right]_{x=0}^{x=+\infty} \mathrm{d} y=\int_{1}^{a} \frac{1}{y} \mathrm{~d} y=[\ln (y)]_{1}^{a}=\ln (a)$

Problem 4

a) The mass is $m=\frac{\pi}{8}$.

The centroid is $(\bar{x}, \bar{y})=\left(0, \frac{32}{15 \pi}\right)$.
The moment of inertia with respect to the x-axis is $I_{x}=\frac{\pi}{16}$.
The moment of inertia with respect to the y-axis is $I_{y}=\frac{\pi}{48}$.
The polar moment of inertia is $I_{0}=\frac{\pi}{12}$.

In fact, the domain D is described in polar coordinates by $\left\{\begin{array}{l}0 \leq r \leq 1 \\ 0 \leq \theta \leq \pi\end{array}\right.$ and the density in polar coordinates is $\delta(r, \theta)=r^{2} \sin ^{2} \theta$.
The mass is given by $m=\iint_{D} \delta \mathrm{~d} A=\int_{0}^{\pi} \int_{0}^{1} r^{2} \sin ^{2} \theta \cdot r \mathrm{~d} r \mathrm{~d} \theta=$
$=\int_{0}^{\pi} \sin ^{2} \theta\left[\frac{r^{4}}{4}\right]_{0}^{1} \mathrm{~d} \theta=\frac{1}{4} \int_{0}^{\pi} \frac{1-\cos (2 \theta)}{2} \mathrm{~d} \theta=\frac{1}{4}\left[\frac{\theta}{2}-\frac{\sin (2 \theta)}{4}\right]_{0}^{\pi}=\frac{1}{4} \frac{\pi}{2}=\frac{\pi}{8}$

Because D and δ are symmetric with respect to the y-axis (that is, they are invariant under the transformation $x \mapsto-x)$, then the x-coordinate of the centroid $\bar{x}=0$.
Instead $\bar{y}=\frac{\iint_{D} y \delta \mathrm{~d} A}{m}=\frac{8}{\pi} \int_{0}^{\pi} \int_{0}^{1} r^{3} \sin ^{3} \theta \cdot r \mathrm{~d} r \mathrm{~d} \theta=\frac{8}{\pi} \int_{0}^{\pi} \sin ^{3} \theta\left[\frac{r^{5}}{5}\right]_{0}^{1} \mathrm{~d} \theta=$
$=\frac{8}{5 \pi} \int_{0}^{\pi} \sin \theta\left(1-\cos ^{2} \theta\right) \mathrm{d} \theta=\frac{8}{5 \pi}\left[-\cos \theta+\frac{\cos ^{3} \theta}{3}\right]_{0}^{\pi}=\frac{8}{5 \pi} \frac{4}{3}=\frac{32}{15 \pi}$
$I_{x}=\iint_{D} y^{2} \delta \mathrm{~d} A=\int_{0}^{\pi} \int_{0}^{1} r^{4} \sin ^{4} \theta \cdot r \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{\pi} \sin ^{4} \theta\left[\frac{r^{6}}{6}\right]_{0}^{1} \mathrm{~d} \theta=\frac{1}{6} \int_{0}^{\pi} \sin ^{4} \theta \mathrm{~d} \theta$

Now, notice that $\sin ^{4} \theta=\left(\sin ^{2} \theta\right)^{2}=\frac{(1-\cos 2 \theta)^{2}}{4}=\frac{1}{4}\left(1-2 \cos 2 \theta+\cos ^{2} 2 \theta\right)=$ $=\frac{1}{4}\left(1-2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right)=\frac{1}{8}(3-4 \cos 2 \theta+\cos 4 \theta)$
Hence $I_{x}=\frac{1}{48} \int_{0}^{\pi}(3-4 \cos 2 \theta+\cos 4 \theta) \mathrm{d} \theta=\frac{1}{48}\left[3 \theta-2 \sin 2 \theta+\frac{\sin 4 \theta}{4}\right]_{0}^{\pi}=\frac{\pi}{16}$
[In the calculations above, we could have used 3B from the Notes, which tells us that $\int_{0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta=2 \int_{0}^{\pi / 2} \sin ^{3} \theta \mathrm{~d} \theta=\frac{4}{3}$ and $\int_{0}^{\pi} \sin ^{4} \theta \mathrm{~d} \theta=2 \int_{0}^{\pi / 2} \sin ^{4} \theta \mathrm{~d} \theta=$ $\left.\frac{3 \pi}{8}.\right]$
$I_{y}=\iint_{D} x^{2} \delta \mathrm{~d} A=\int_{0}^{\pi} \int_{0}^{1} r^{4} \sin ^{2} \theta \cos ^{2} \theta \cdot r \mathrm{~d} r \mathrm{~d} \theta=\frac{1}{6} \int_{0}^{\pi} \frac{1}{4}(2 \sin \theta \cos \theta)^{2} \mathrm{~d} \theta=$ $=\frac{1}{24} \int_{0}^{\pi} \sin ^{2} 2 \theta \mathrm{~d} \theta=\frac{1}{24} \int_{0}^{\pi} \frac{1-\cos 4 \theta}{2} \mathrm{~d} \theta=\frac{1}{48}\left[\theta-\frac{\sin 4 \theta}{4}\right]_{0}^{\pi}=\frac{\pi}{48}$

The polar moment of inertia is obtained from I_{x} and I_{y} in the following way: $I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \delta \mathrm{d} A=I_{x}+I_{y}=\frac{\pi}{16}+\frac{\pi}{48}=\frac{3 \pi+\pi}{48}=\frac{\pi}{12}$.

