18.02 Problem Set 1 - Solutions of Part B

Problem 1

a) The vertices of the tetrahedron are P = (1,1,1), Q = (1,-1,-1), R = (-1,1,-1), S = (-1,-1,1). The length of each edge is

$$\overrightarrow{PQ} = \sqrt{(1-1)^2 + (-1-1)^2 + (-1-1)^2} = 2\sqrt{2}.$$

They are all equal because they are diagonals of squares of sidelength 2.

b) The angle is $\theta = \pi/3$.

In fact, $\overrightarrow{PQ} = \langle 0, -2, -2 \rangle$, $\overrightarrow{PR} = \langle -2, 0, -2 \rangle$ and the angle θ between two adjacent edges satisfy $|\overrightarrow{PQ}| |\overrightarrow{PR}| \cos(\theta) = \overrightarrow{PQ} \cdot \overrightarrow{PR}$. Hence $8\cos(\theta) = 4 \implies \cos(\theta) = 1/2$, which implies $\theta = \pi/3$. (One could have also observed that faces are equilateral triangles, whose internal angles sum up to π .)

c) The inner dihedral angle α is equal to $\arccos(1/3) \approx 70.5^{\circ}$.

For instance, the inner dihedral angle α between the PSQ plane and the PRS plane satisfies $\xrightarrow{}$

$$\cos(\alpha) = \frac{N_1 \cdot N_2}{|\vec{N}_1| |\vec{N}_2|} \quad \text{where}$$

$$\overrightarrow{N}_1 = \overrightarrow{PQ} \times \overrightarrow{PS} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & -2 \\ -2 & -2 & 0 \end{vmatrix} = \langle -4, 4, -4 \rangle$$
is orthogonal to the plane PSQ and
$$\overrightarrow{N}_2 = \overrightarrow{PR} \times \overrightarrow{PS} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{vmatrix} = \langle -4, 4, 4 \rangle$$
is orthogonal to the plane PRS .
Hence $\cos(\alpha) = \frac{\langle -4, 4, -4 \rangle \cdot \langle -4, 4, 4 \rangle}{48} = 1/3$, that is $\alpha = \arccos(1/3) \approx 70.5^{\circ}$.
(Instead of the inner dihedral angle α , one could have also computed the outer dihedral angle $\pi + \alpha$.)

Problem 2

a) The equation of the plane is $\overrightarrow{AQ} \cdot \overrightarrow{N} = 0$. The distance between P and P' is $\frac{|\overrightarrow{AA'} \cdot \overrightarrow{N}|}{|\overrightarrow{N}|}$.

In fact, the distance between P and P' is the length of the projection of AA' onto \overrightarrow{N} .

b) Let Q = (x, y, z). The equation for P is x + 2y + z = -3. The equation for P' is x + 2y + z = 3. The distance between P and P' is $\sqrt{6}$.

In fact, using (a), the equation for P is $[(x, y, z) - (0, -2, 1)] \cdot \langle 1, 2, 1 \rangle = 0$, that is x + 2y + z = -3. The equation for P' is $[(x, y, z) - (1, 1, 0)] \cdot \langle 1, 2, 1 \rangle = 0$, that is x + 2y + z = 3. The distance between P and P' is $\frac{\langle 1, 3, -1 \rangle \cdot \langle 1, 2, 1 \rangle}{\sqrt{1^2 + 2^2 + 1^2}} = \sqrt{6}$.

c) Points Q in P are characterized by $\overrightarrow{B_1Q} \cdot (\overrightarrow{B_1B_2} \times \overrightarrow{B_1'B_2'}) = 0$. Points Q in P' are given by $\overrightarrow{B_1'Q} \cdot (\overrightarrow{B_1B_2} \times \overrightarrow{B_1'B_2'}) = 0$.

In fact a normal \overrightarrow{N} to P and P' is given by $\overrightarrow{B_1B_2} \times \overrightarrow{B'_1B'_2}$.

d) Denote a general point by Q = (x, y, z). Then the equation for P is 3x - 4y - 12z = 7. The equation for P' is 3x - 4y - 12z = 0. The distance between L and L' is 7/13.

In fact, $\overrightarrow{B_1B_2} = \langle 0, 3, -1 \rangle$ and $\overrightarrow{B_1'B_2'} = \langle 4, -3, 2 \rangle$. Hence, a normal vector to P and P' is $\overrightarrow{N} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & -1 \\ 4 & -3 & 2 \end{vmatrix} = \langle 3, -4, -12 \rangle$. Hence, the equation for P is

given by $\langle x-1, y+1, z \rangle \cdot \langle 3, -4, -12 \rangle = 3x - 4y - 12z - 7 = 0$. Similarly the equation for P' is $\langle x, y-3, z+1 \rangle \cdot \langle 3, -4, -12 \rangle = 3x - 4y - 12z = 0$.

The distance between the two lines L and L' is the same as the distance between

P and P' (¹). Therefore, by part (c), this distance is

$$\frac{|B_1B_1^{\prime} \cdot \overrightarrow{N}|}{|\overrightarrow{N}|} = \frac{|\langle -1, 4, -1 \rangle \cdot \langle 3, -4, -12 \rangle|}{\sqrt{9 + 16 + 144}} = \frac{7}{13}.$$

Problem 3

a) $\overrightarrow{N} = \langle 3, -4, -12 \rangle$ from 2(d). Note that \overrightarrow{N} points from P' to P. If Q_0 does not belong to P or P', three situations can occur:

- Case 1. Q_0 is on the \overrightarrow{N} side of $P(\overrightarrow{B_1Q_0}, \overrightarrow{N} > 0)$. In other words, Q_0 is in the halfspace bounded by P which does not contain P'. You see a red hemisphere (corresponding to $\hat{u} \cdot \overrightarrow{N} < 0$) and nothing in the opposite hemisphere $(\hat{u} \cdot \overrightarrow{N} \ge 0)$.
- Case 2. Q_0 belongs to the portion of space bounded by P and P' $(\overrightarrow{B_1Q_0}, \overrightarrow{N} < 0$ and $\overrightarrow{B'_1Q_0}, \overrightarrow{N} > 0$). You see a red hemisphere $(\hat{u} \cdot \overrightarrow{N} > 0)$, a blue hemisphere $(\hat{u} \cdot \overrightarrow{N} > 0)$ and nothing in the separating great circle $(\hat{u} \cdot \overrightarrow{N} = 0)$
- Case 3. Q_0 is on the $-\overrightarrow{N}$ side of P' $(\overrightarrow{B'_1Q_0} \cdot \overrightarrow{N} < 0)$. In other words, Q_0 is in the half-space bounded by P' which does not contain P. You see a blue hemisphere (corresponding to $\hat{u} \cdot \overrightarrow{N} > 0$) and nothing in the opposite hemisphere ($\hat{u} \cdot \overrightarrow{N} \leq 0$).

[For extra credit.

If Q_0 belongs to P, then you see a blue hemisphere $(\hat{u} \cdot \vec{N} < 0)$ bounded by a red great circle $(\hat{u} \cdot \vec{N} = 0)$ and nothing in the opposite hemisphere $(\hat{u} \cdot \vec{N} > 0)$. If Q_0 belongs to P', then you see a red hemisphere $(\hat{u} \cdot \vec{N} > 0)$ bounded by a blue great circle $(\hat{u} \cdot \vec{N} = 0)$ and nothing in the opposite hemisphere $(\hat{u} \cdot \vec{N} < 0)$.]

b) From Q_0 each of the lines L and L' looks like half of a great circle (an example of such great circles are longitude lines).

For instance, if \hat{v} is the direction of the line *L*, that is $\hat{v} = \frac{B_1 B_2}{|\overrightarrow{B_1 B_2}|}$ (or you

¹The nearest distance between the two lines L and L' is the same as the distance between P and P'. In fact, the plane Π through L' and containing \overrightarrow{N} must intersect L in exactly one point R, because L and L' are skew. Now consider the line passing through R with direction \overrightarrow{N} : it intersects L' in one point R'. Notice that $\overrightarrow{RR'}$ is parallel to \overrightarrow{N} , so $|\overrightarrow{RR'}|$ is the distance between P and P', but also L and L'.

could have chosen $\hat{v} = -\frac{\overline{B_1 B_2}}{|\overline{B_1 B_2}|}$, then *L* looks like half of a great circle with endpoints $\pm \hat{v}$.

The endpoints of each great circle do not correspond to any point on the line (they would correspond to "points at infinity" of the line).

When P is in front of P' (case 1), you see L in front of L' and inside the red hemisphere.

When Q_0 is in between P and P' (case 2) you see L and L' disjoint.

When P' is in front of P (case 3), you see L' in front of L and inside the blue hemisphere.

Let $Q_0 = (x_0, y_0, z_0)$. In coordinates: Case 1 corresponds to $\overrightarrow{B_1Q_0} \cdot \overrightarrow{N} > 0$, that is $\langle x_0 - 1, y_0 + 1, z_0 \rangle \cdot \langle 3, -4, -12 \rangle = 3x_0 - 4y_0 - 12z_0 - 7 > 0$. Case 2 corresponds to $0 < 3x_0 - 4y_0 - 12z_0 < 7$. Case 3 corresponds to $3x_0 - 4y_0 - 12z_0 < 0$. $[Q_0$ belonging P corresponds to $3x_0 - 4y_0 - 12z_0 = 7$. Q_0 belonging to P' corresponds to $3x_0 - 4y_0 - 12z_0 = 0$.]

For $Q_0 = (1, 0, 0)$, we have $3x_0 - 4y_0 - 12z_0 = 3$ and so Q_0 is in between the two planes and the lines appear disjoint.

For $Q_0 = (5, 10, -10)$, we have $3x_0 - 4y_0 - 12z_0 = 65$ and so Q_0 sees L in front of L'.

For $Q_0 = (1/100, 0, 0)$, we have $3x_0 - 4y_0 - 12z_0 = 3/100$ and so again the lines appear disjoint.

Problem 4

a)
$$A_{\pi/3} = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$
, $\hat{u} = \langle 1/2, \sqrt{3}/2 \rangle$, $\hat{v} = \langle -\sqrt{3}/2, 1/2 \rangle$
In fact $\hat{u} = A_{\pi/3}\hat{i} = \langle 1/2, \sqrt{3}/2 \rangle$ and $\hat{v} = A_{\pi/3}\hat{j} = \langle -\sqrt{3}/2, 1/2 \rangle$.

b) Multiplying

$$\begin{aligned} A_{\theta_1}A_{\theta_2} &= \left(\begin{array}{cc} \cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1 \end{array}\right) \left(\begin{array}{cc} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2 \end{array}\right) = \\ &= \left(\begin{array}{cc} \cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2 & -\cos\theta_1\sin\theta_2 - \sin\theta_1\cos\theta_2\\ \sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2 & -\sin\theta_1\sin\theta_2 + \cos\theta_1\cos\theta_2 \end{array}\right) = \\ &= \left(\begin{array}{cc} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2)\\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{array}\right) \end{aligned}$$

The matrix A_{θ} performs a counterclockwise rotation of the plane of an angle θ with center 0.

c) $A_{\theta}^{-1} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$. In fact, if $A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$, then the matrix of cofactors of A_{θ} is still A_{θ} . The adjoint of A_{θ} is $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$ and then the inverse A_{θ}^{-1} is obtained dividing by the determinant, which is 1 in this case.

d) The reason for $A_{\theta}^{-1} = A_{-\theta}$ is that the inverse operation of rotating the plane by an angle θ around the origin is rotating the plane by an angle $-\theta$ around the origin.

Comparing the two expressions for the inverse matrix we obtain that $\cos(-\theta) = \cos \theta$ and $\sin(-\theta) = -\sin \theta$.

Problem 5

a) The four matrices are

$$A_{1} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, A_{2} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, A_{3} = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
and $A_{4} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$.

b)	$A_1 = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$	$\det = 1$	rotation	Ŷ
	$A_2 = \left(\begin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{array}\right)$	$\det = 1$	rotation	Ś
	$A_3 = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$	det = -1	reflection	Ŷ
	$A_4 = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$	$\det = -1$	reflection	Ŷ

Pattern: det(A) = 1 rotation; det(A) = -1 reflection.

Problem 6

a) The system in matrix form is AX = B, where

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & 3 \\ 1 & 0 & 2 \end{pmatrix} \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad B = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

So we have

$$\left(\begin{array}{rrrr} 2 & -1 & 0 \\ 1 & 1 & 3 \\ 1 & 0 & 2 \end{array}\right) \left(\begin{array}{r} x \\ y \\ z \end{array}\right) = \left(\begin{array}{r} 1 \\ 1 \\ 0 \end{array}\right).$$

b) The solution is $X = \frac{1}{3} \begin{pmatrix} 4 \\ 5 \\ -2 \end{pmatrix} = \begin{pmatrix} 4/3 \\ 5/3 \\ -2/3 \end{pmatrix}$. The inverse of A is $A^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 2 & -3 \\ 1 & 4 & -6 \\ -1 & -1 & 3 \end{pmatrix}$.

First of all, the matrix A is invertible, because its determinant is

$$\begin{vmatrix} 2 & -1 & 0 \\ 1 & 1 & 3 \\ 1 & 0 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} + 0 \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = 2 \cdot 2 - (-1)(2 - 3) = 4 - 1 = 3$$

which is not zero.

which is not zero.
The matrix of minors of A is
$$\begin{pmatrix} 2 & -1 & -1 \\ -2 & 4 & 1 \\ -3 & 6 & 3 \end{pmatrix}$$
.
The matrix of cofactors is $\begin{pmatrix} 2 & 1 & -1 \\ 2 & 4 & -1 \\ -3 & -6 & 3 \end{pmatrix}$.
The adjoint of A is $\begin{pmatrix} 2 & 2 & -3 \\ 1 & 4 & -6 \\ -1 & -1 & 3 \end{pmatrix}$.
The inverse of A is

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{3} \begin{pmatrix} 2 & 2 & -3\\ 1 & 4 & -6\\ -1 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 2/3 & 2/3 & -1\\ 1/3 & 4/3 & -2\\ -1/3 & -1/3 & 1 \end{pmatrix}.$$

The solution X of the linear system above is given by $X = A^{-1}B$, that is

$$X = \frac{1}{3} \begin{pmatrix} 2 & 2 & -3 \\ 1 & 4 & -6 \\ -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 4 \\ 5 \\ -2 \end{pmatrix} = \begin{pmatrix} 4/3 \\ 5/3 \\ -2/3 \end{pmatrix}.$$

c) The solution is (x, y, z) = (4/3, 5/3, -2/3).

By substitution, the third equation gives us x = -2z. So

$$-y - 4z = 1$$
$$y + z = 1$$
$$x = -2z$$

Adding the first two equations we get -3z = 2, so z = -2/3 and x = 4/3. Then the second equation y = 1 - z gives y = 5/3.