18.02 Problem Set 1 - Solutions of Part B

Problem 1

a) The vertices of the tetrahedron are $P=(1,1,1), Q=(1,-1,-1), R=$ $(-1,1,-1), S=(-1,-1,1)$. The length of each edge is

$$
|\overrightarrow{P Q}|=\sqrt{(1-1)^{2}+(-1-1)^{2}+(-1-1)^{2}}=2 \sqrt{2}
$$

They are all equal because they are diagonals of squares of sidelength 2 .
b) The angle is $\theta=\pi / 3$.

In fact, $\overrightarrow{P Q}=\langle 0,-2,-2\rangle, \overrightarrow{P R}=\langle-2,0,-2\rangle$ and the angle θ between two adjacent edges satisfy $|\overrightarrow{P Q}||\overrightarrow{P R}| \cos (\theta)=\overrightarrow{P Q} \cdot \overrightarrow{P R}$.
Hence $8 \cos (\theta)=4 \quad \Rightarrow \quad \cos (\theta)=1 / 2$, which implies $\theta=\pi / 3$.
(One could have also observed that faces are equilateral triangles, whose internal angles sum up to π.)
c) The inner dihedral angle α is equal to $\arccos (1 / 3) \approx 70.5^{\circ}$.

For instance, the inner dihedral angle α between the $P S Q$ plane and the $P R S$ plane satisfies
$\cos (\alpha)=\frac{\vec{N}_{1} \cdot \vec{N}_{2}}{\left|\vec{N}_{1}\right|\left|\vec{N}_{2}\right|} \quad$ where
$\vec{N}_{1}=\overrightarrow{P Q} \times \overrightarrow{P S}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & -2 \\ -2 & -2 & 0\end{array}\right|=\langle-4,4,-4\rangle$
is orthogonal to the plane $P S Q$ and
$\vec{N}_{2}=\overrightarrow{P R} \times \overrightarrow{P S}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & -2 \\ -2 & -2 & 0\end{array}\right|=\langle-4,4,4\rangle$
is orthogonal to the plane $P R S$.
Hence $\cos (\alpha)=\frac{\langle-4,4,-4\rangle \cdot\langle-4,4,4\rangle}{48}=1 / 3$, that is $\alpha=\arccos (1 / 3) \approx 70.5^{\circ}$. (Instead of the inner dihedral angle α, one could have also computed the outer dihedral angle $\pi+\alpha$.)

Problem 2

a) The equation of the plane is $\overrightarrow{A Q} \cdot \vec{N}=0$.

The distance between P and P^{\prime} is $\frac{\left|\overrightarrow{A A^{\prime}} \cdot \vec{N}\right|}{|\vec{N}|}$.
In fact, the distance between P and P^{\prime} is the length of the projection of $\overrightarrow{A A^{\prime}}$ onto \vec{N}.
b) Let $Q=(x, y, z)$.

The equation for P is $x+2 y+z=-3$.
The equation for P^{\prime} is $x+2 y+z=3$.
The distance between P and P^{\prime} is $\sqrt{6}$.
In fact, using (a), the equation for P is $[(x, y, z)-(0,-2,1)] \cdot\langle 1,2,1\rangle=0$, that is $x+2 y+z=-3$. The equation for P^{\prime} is $[(x, y, z)-(1,1,0)] \cdot\langle 1,2,1\rangle=0$, that is $x+2 y+z=3$. The distance between P and P^{\prime} is $\frac{\langle 1,3,-1\rangle \cdot\langle 1,2,1\rangle}{\sqrt{1^{2}+2^{2}+1^{2}}}=\sqrt{6}$.
c) Points Q in P are characterized by $\overrightarrow{B_{1} Q} \cdot\left(\overrightarrow{B_{1} B_{2}} \times \overrightarrow{B_{1}^{\prime} B_{2}^{\prime}}\right)=0$.

Points Q in P^{\prime} are given by $\overrightarrow{B_{1}^{\prime Q}} \cdot\left(\overrightarrow{B_{1} B_{2}} \times \overrightarrow{B_{1}^{\prime} B_{2}^{\prime}}\right)=0$.
In fact a normal \vec{N} to P and P^{\prime} is given by $\overrightarrow{B_{1} B_{2}} \times \overrightarrow{B_{1}^{\prime} B_{2}^{\prime}}$.
d) Denote a general point by $Q=(x, y, z)$.

Then the equation for P is $3 x-4 y-12 z=7$.
The equation for P^{\prime} is $3 x-4 y-12 z=0$.
The distance between L and L^{\prime} is $7 / 13$.
In fact, $\overrightarrow{B_{1} B_{2}}=\langle 0,3,-1\rangle$ and $\overrightarrow{B_{1}^{\prime} B_{2}^{\prime}}=\langle 4,-3,2\rangle$. Hence, a normal vector to P and P^{\prime} is $\vec{N}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & -1 \\ 4 & -3 & 2\end{array}\right|=\langle 3,-4,-12\rangle$. Hence, the equation for P is given by $\langle x-1, y+1, z\rangle \cdot\langle 3,-4,-12\rangle=3 x-4 y-12 z-7=0$. Similarly the equation for P^{\prime} is $\langle x, y-3, z+1\rangle \cdot\langle 3,-4,-12\rangle=3 x-4 y-12 z=0$.
The distance between the two lines L and L^{\prime} is the same as the distance between
P and $P^{\prime}\left({ }^{1}\right)$. Therefore, by part (c), this distance is

$$
\frac{\left|\overrightarrow{B_{1} B_{1}^{\prime}} \cdot \vec{N}\right|}{|\vec{N}|}=\frac{|\langle-1,4,-1\rangle \cdot\langle 3,-4,-12\rangle|}{\sqrt{9+16+144}}=\frac{7}{13} .
$$

Problem 3

a) $\vec{N}=\langle 3,-4,-12\rangle$ from $2(\mathrm{~d})$. Note that \vec{N} points from P^{\prime} to P.

If Q_{0} does not belong to P or P^{\prime}, three situations can occur:
Case 1. Q_{0} is on the \vec{N} side of $P\left(\overrightarrow{B_{1} Q_{0}} \cdot \vec{N}>0\right)$. In other words, Q_{0} is in the halfspace bounded by P which does not contain P^{\prime}. You see a red hemisphere (corresponding to $\hat{u} \cdot \vec{N}<0$) and nothing in the opposite hemisphere ($\hat{u} \cdot \vec{N} \geq 0$).

Case 2. Q_{0} belongs to the portion of space bounded by P and $P^{\prime}\left(\overrightarrow{B_{1} Q_{0}} \cdot \vec{N}<0\right.$ and $\left.\overrightarrow{B_{1}^{\prime} Q_{0}} \cdot \vec{N}>0\right)$. You see a red hemisphere $(\hat{u} \cdot \vec{N}>0)$, a blue hemisphere $(\hat{u} \cdot \vec{N}>0)$ and nothing in the separating great circle $(\hat{u} \cdot \vec{N}=0)$

Case 3. Q_{0} is on the $-\vec{N}$ side of $P^{\prime}\left(\overrightarrow{B_{1}^{\prime} Q_{0}} \cdot \vec{N}<0\right)$. In other words, Q_{0} is in the half-space bounded by P^{\prime} which does not contain P. You see a blue hemisphere (corresponding to $\hat{u} \cdot \vec{N}>0$) and nothing in the opposite hemisphere $(\hat{u} \cdot \vec{N} \leq 0)$.
[For extra credit.
If Q_{0} belongs to P, then you see a blue hemisphere ($\hat{u} \cdot \vec{N}<0$) bounded by a red great circle $(\hat{u} \cdot \vec{N}=0)$ and nothing in the opposite hemisphere $(\hat{u} \cdot \vec{N}>0)$. If Q_{0} belongs to P^{\prime}, then you see a red hemisphere $(\hat{u} \cdot \vec{N}>0)$ bounded by a blue great circle $(\hat{u} \cdot \vec{N}=0)$ and nothing in the opposite hemisphere $(\hat{u} \cdot \vec{N}<0)$.]
b) From Q_{0} each of the lines L and L^{\prime} looks like half of a great circle (an example of such great circles are longitude lines).
For instance, if \hat{v} is the direction of the line L, that is $\hat{v}=\frac{\overrightarrow{B_{1} B_{2}}}{\left|\overrightarrow{B_{1} B_{2}}\right|}$ (or you

[^0]could have chosen $\left.\hat{v}=-\frac{\overrightarrow{B_{1} B_{2}}}{\left|\overrightarrow{B_{1} B_{2}}\right|}\right)$, then L looks like half of a great circle with endpoints $\pm \hat{v}$.
The endpoints of each great circle do not correspond to any point on the line (they would correspond to "points at infinity" of the line).
When P is in front of P^{\prime} (case 1), you see L in front of L^{\prime} and inside the red hemisphere.
When Q_{0} is in between P and P^{\prime} (case 2) you see L and L^{\prime} disjoint.
When P^{\prime} is in front of P (case 3), you see L^{\prime} in front of L and inside the blue hemisphere.

Let $Q_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. In coordinates:
Case 1 corresponds to $\overrightarrow{B_{1} Q_{0}} \cdot \vec{N}>0$, that is $\left\langle x_{0}-1, y_{0}+1, z_{0}\right\rangle \cdot\langle 3,-4,-12\rangle=$ $3 x_{0}-4 y_{0}-12 z_{0}-7>0$.
Case 2 corresponds to $0<3 x_{0}-4 y_{0}-12 z_{0}<7$.
Case 3 corresponds to $3 x_{0}-4 y_{0}-12 z_{0}<0$.
[Q_{0} belonging P corresponds to $3 x_{0}-4 y_{0}-12 z_{0}=7$.
Q_{0} belonging to P^{\prime} corresponds to $3 x_{0}-4 y_{0}-12 z_{0}=0$.]
For $Q_{0}=(1,0,0)$, we have $3 x_{0}-4 y_{0}-12 z_{0}=3$ and so Q_{0} is in between the two planes and the lines appear disjoint.
For $Q_{0}=(5,10,-10)$, we have $3 x_{0}-4 y_{0}-12 z_{0}=65$ and so Q_{0} sees L in front of L^{\prime}.
For $Q_{0}=(1 / 100,0,0)$, we have $3 x_{0}-4 y_{0}-12 z_{0}=3 / 100$ and so again the lines appear disjoint.

Problem 4

a) $A_{\pi / 3}=\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right), \quad \hat{u}=\langle 1 / 2, \sqrt{3} / 2\rangle, \quad \hat{v}=\langle-\sqrt{3} / 2,1 / 2\rangle$.

In fact $\hat{u}=A_{\pi / 3} \hat{i}=\langle 1 / 2, \sqrt{3} / 2\rangle$ and $\hat{v}=A_{\pi / 3} \hat{j}=\langle-\sqrt{3} / 2,1 / 2\rangle$.
b) Multiplying

$$
\begin{aligned}
A_{\theta_{1}} A_{\theta_{2}} & =\left(\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} & -\cos \theta_{1} \sin \theta_{2}-\sin \theta_{1} \cos \theta_{2} \\
\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2} & -\sin \theta_{1} \sin \theta_{2}+\cos \theta_{1} \cos \theta_{2}
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)
\end{aligned}
$$

The matrix A_{θ} performs a counterclockwise rotation of the plane of an angle θ with center 0 .
c) $A_{\theta}^{-1}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$.

In fact, if $A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, then the matrix of cofactors of A_{θ} is still A_{θ}.
The adjoint of A_{θ} is $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ and then the inverse A_{θ}^{-1} is obtained dividing by the determinant, which is 1 in this case.
d) The reason for $A_{\theta}^{-1}=A_{-\theta}$ is that the inverse operation of rotating the plane by an angle θ around the origin is rotating the plane by an angle $-\theta$ around the origin.
Comparing the two expressions for the inverse matrix we obtain that $\cos (-\theta)=$ $\cos \theta$ and $\sin (-\theta)=-\sin \theta$.

Problem 5

a) The four matrices are
$A_{1}=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right), A_{2}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right), A_{3}=\left(\begin{array}{cc}-1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$ and $A_{4}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)$.

$A_{1}=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$	$\operatorname{det}=1$	rotation	retation
$A_{2}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$	det $=1$		
$A_{3}=\left(\begin{array}{cc}-1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$	$\operatorname{det}=-1$	reflection	reflection
$A_{4}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)$	$\operatorname{det}=-1$	ry	

Pattern: $\operatorname{det}(A)=1$ rotation; $\operatorname{det}(A)=-1$ reflection.

Problem 6

a) The system in matrix form is $A X=B$, where

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 1 & 3 \\
1 & 0 & 2
\end{array}\right) \quad X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad B=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

So we have

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 1 & 3 \\
1 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

b) The solution is $X=\frac{1}{3}\left(\begin{array}{c}4 \\ 5 \\ -2\end{array}\right)=\left(\begin{array}{c}4 / 3 \\ 5 / 3 \\ -2 / 3\end{array}\right)$.

The inverse of A is $A^{-1}=\frac{1}{3}\left(\begin{array}{ccc}2 & 2 & -3 \\ 1 & 4 & -6 \\ -1 & -1 & 3\end{array}\right)$.
First of all, the matrix A is invertible, because its determinant is

$$
\left|\begin{array}{ccc}
2 & -1 & 0 \\
1 & 1 & 3 \\
1 & 0 & 2
\end{array}\right|=2\left|\begin{array}{cc}
1 & 3 \\
0 & 2
\end{array}\right|-(-1)\left|\begin{array}{cc}
1 & 3 \\
1 & 2
\end{array}\right|+0\left|\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right|=2 \cdot 2-(-1)(2-3)=4-1=3
$$

which is not zero.
The matrix of minors of A is $\left(\begin{array}{ccc}2 & -1 & -1 \\ -2 & 4 & 1 \\ -3 & 6 & 3\end{array}\right)$.
The matrix of cofactors is $\left(\begin{array}{ccc}2 & 1 & -1 \\ 2 & 4 & -1 \\ -3 & -6 & 3\end{array}\right)$.
The adjoint of A is $\left(\begin{array}{ccc}2 & 2 & -3 \\ 1 & 4 & -6 \\ -1 & -1 & 3\end{array}\right)$.
The inverse of A is

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{3}\left(\begin{array}{ccc}
2 & 2 & -3 \\
1 & 4 & -6 \\
-1 & -1 & 3
\end{array}\right)=\left(\begin{array}{ccc}
2 / 3 & 2 / 3 & -1 \\
1 / 3 & 4 / 3 & -2 \\
-1 / 3 & -1 / 3 & 1
\end{array}\right)
$$

The solution X of the linear system above is given by $X=A^{-1} B$, that is

$$
X=\frac{1}{3}\left(\begin{array}{ccc}
2 & 2 & -3 \\
1 & 4 & -6 \\
-1 & -1 & 3
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
4 \\
5 \\
-2
\end{array}\right)=\left(\begin{array}{c}
4 / 3 \\
5 / 3 \\
-2 / 3
\end{array}\right)
$$

c) The solution is $(x, y, z)=(4 / 3,5 / 3,-2 / 3)$.

By substitution, the third equation gives us $x=-2 z$. So

$$
\begin{aligned}
-y-4 z & =1 \\
y+z & =1 \\
x & =-2 z
\end{aligned}
$$

Adding the first two equations we get $-3 z=2$, so $z=-2 / 3$ and $x=4 / 3$. Then the second equation $y=1-z$ gives $y=5 / 3$.

[^0]: ${ }^{1}$ The nearest distance between the two lines L and L^{\prime} is the same as the distance between P and P^{\prime}. In fact, the plane Π through L^{\prime} and containing \vec{N} must intersect L in exactly one point R, because L and L^{\prime} are skew. Now consider the line passing through R with direction \vec{N} : it intersects L^{\prime} in one point R^{\prime}. Notice that $\overrightarrow{R R^{\prime}}$ is parallel to \vec{N}, so $\left|\overrightarrow{R R^{\prime}}\right|$ is the distance between P and P^{\prime}, but also L and L^{\prime}.

