18.02 Problem Set 2 - Solutions of Part B

Problem 1

a) The position vector is $\overrightarrow{\mathbf{r}}(t)=\langle\cos (\pi-t), \sin (\pi-t)\rangle=\langle-\cos (t), \sin (t)\rangle$.

In fact, the position vector of a uniform circular motion centered at the origin is given by

$$
\overrightarrow{\mathbf{r}}(t)=\langle R \cos (a t+b), R \sin (a t+b)\rangle
$$

where $R>0$ is the radius.
Its velocity vector is

$$
\overrightarrow{\mathbf{v}}(t)=\langle-a R \sin (a t+b), a R \cos (a t+b)\rangle
$$

and so the speed is $|\overrightarrow{\mathbf{v}}(t)|=R|a|$.
Now $\overrightarrow{\mathbf{r}}(0)=\langle R \cos (b), R \sin (b)\rangle=\langle-1,0\rangle$.
This forces $R=1$ and $b=\pi$ (or $(2 k+1) \pi$ with k integer).
The condition on the speed $|\overrightarrow{\mathbf{v}}(t)|=1$ implies $a= \pm 1$.
As the motion is clockwise, then $a=-1$.
Concluding we get $\overrightarrow{\mathbf{r}}(t)=\langle\cos (\pi-t), \sin (\pi-t)\rangle$.
b) The position vector is $\overrightarrow{\mathbf{r}}(t)=\langle 10 \cos (6 t), 10 \sin (6 t)\rangle$.

Similarly to (a), $\overrightarrow{\mathbf{r}}(t)=\langle R \cos (b), R \sin (b)\rangle=\langle 10,0\rangle$, so that $R=10$ and $b=0$ (or $2 k \pi$ with k integer).
Then $|\overrightarrow{\mathbf{v}}(t)|=60$ implies $10|a|=60$, so that $a=6$ because the motion is counterclockwise.
c) The position vector is $\overrightarrow{\mathbf{r}}(t)=\langle 10 \cos (120 \pi t), 10 \sin (120 \pi t)\rangle$.

As in (b), we have $R=10$ and $b=0$.
Moreover, 60 rotations per minute means an angle of $60 \cdot 2 \pi=120 \pi$ radiants per minute.
d) The position vector is $\overrightarrow{\mathbf{r}}(t)=\left\langle 1-\cos (t)-t, 1+\sin (t)-t, \frac{1}{2} t^{2}\right\rangle$.

In fact, $\frac{\mathrm{d}}{\mathrm{d} t} \overrightarrow{\mathbf{v}}(t)=\langle\cos (t),-\sin (t), 1\rangle$ implies that

$$
\overrightarrow{\mathbf{v}}(t)=\langle a+\sin (t), b+\cos (t), c+t\rangle
$$

But $\overrightarrow{\mathbf{v}}(0)=\langle-1,0,0\rangle$, so that $a=-1, b=1$ and $c=0$.
Hence $\overrightarrow{\mathbf{v}}(t)=\langle\sin (t)-1, \cos (t)-1, t\rangle$.
Similarly, $\frac{\mathrm{d}}{\mathrm{d} t} \overrightarrow{\mathbf{r}}(t)=\langle\sin (t)-1, \cos (t)-1, t\rangle$ implies that

$$
\overrightarrow{\mathbf{r}}(t)=\left\langle a^{\prime}-\cos (t)-t, b^{\prime}+\sin (t)-t, c^{\prime}+\frac{1}{2} t^{2}\right\rangle
$$

But $\overrightarrow{\mathbf{r}}(0)=\langle 0,1,0\rangle$ forces $a^{\prime}=1, b^{\prime}=1$ and $c^{\prime}=0$.
Hence $\overrightarrow{\mathbf{r}}(t)=\left\langle 1-\cos (t)-t, 1+\sin (t)-t, \frac{1}{2} t^{2}\right\rangle$.

Problem 2

a) The hypothesis is that $|\overrightarrow{\mathbf{r}}(t)|=R$ for all values of t, where R is some positive number (the radius of the sphere).
Taking the square of both sides we get

$$
\overrightarrow{\mathbf{r}}(t) \cdot \overrightarrow{\mathbf{r}}(t)=|\overrightarrow{\mathbf{r}}(t)|^{2}=R^{2}
$$

Differentiating both sides with respect to t we get

$$
\frac{\mathrm{d} \overrightarrow{\mathbf{r}}(t)}{\mathrm{d} t} \cdot \overrightarrow{\mathbf{r}}(t)+\overrightarrow{\mathbf{r}}(t) \cdot \frac{\mathrm{d} \overrightarrow{\mathbf{r}}(t)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}(\overrightarrow{\mathbf{r}}(t) \cdot \overrightarrow{\mathbf{r}}(t))=0
$$

which means $\overrightarrow{\mathbf{v}}(t) \cdot \overrightarrow{\mathbf{r}}(t)=0$ for all t.
We proved that $\overrightarrow{\mathbf{v}}(t)$ is orthogonal to $\overrightarrow{\mathbf{r}}(t)$ at all times, thus $\overrightarrow{\mathbf{v}}(t)$ is tangent to the sphere of radius R centered at the origin.
b) We have to check that $|\overrightarrow{\mathbf{r}}(t)|=1$ for all t. We have

$$
|\overrightarrow{\mathbf{r}}(t)|^{2}=\cos ^{2}(t) \sin ^{2}(2 t)+\sin ^{2}(t) \sin ^{2}(2 t)+\cos ^{2}(2 t)=\sin ^{2}(2 t)+\cos ^{2}(2 t)=1
$$

so that $|\overrightarrow{\mathbf{r}}(t)|=1$.
c) $\overrightarrow{\mathbf{v}}(t)=\langle-\sin (t) \sin (2 t)+2 \cos (t) \cos (2 t), \cos (t) \sin (2 t)+2 \sin (t) \cos (2 t),-2 \sin (2 t)\rangle$ just differentiating $\overrightarrow{\mathbf{r}}(t)$ componentwise.
d) The angle is $\theta=\arccos (1 / \sqrt{5})(\operatorname{or} \arccos (-1 / \sqrt{5})=\pi-\arccos (1 / \sqrt{5}))$. The points of intersection between the trajectory and the equator are $(\sqrt{2} / 2, \sqrt{2} / 2,0),(\sqrt{2} / 2,-\sqrt{2} / 2,0),(-\sqrt{2} / 2,-\sqrt{2} / 2,0),(-\sqrt{2} / 2, \sqrt{2} / 2,0)$.

First we have to find the point(s) where the trajectory intersects the equator, that is where

$$
z(t)=\cos (2 t)=0
$$

It happens for $t=\pi / 4+k \pi / 2$ with k integer. These values of t determine four points on the sphere:

$$
\begin{aligned}
& P_{1}=(\sqrt{2} / 2, \sqrt{2} / 2,0)(\text { corresponding to } t=\pi / 4) \\
& P_{2}=(\sqrt{2} / 2,-\sqrt{2} / 2,0)(\text { corresponding to } t=3 \pi / 4) \\
& P_{3}=(-\sqrt{2} / 2,-\sqrt{2} / 2,0)(\text { corresponding to } t=5 \pi / 4) \\
& P_{4}=(-\sqrt{2} / 2, \sqrt{2} / 2,0)(\text { corresponding to } t=7 \pi / 4)
\end{aligned}
$$

Notice that, if P is a point on the unit circle in the plane, then a tangent vector at P to the circle can be obtained rotating $\overrightarrow{O P}$ by $\pi / 2$ (or by $-\pi / 2$, in this case we would get the opposite vector, which is still tangent to the equator). As a consequence, a vector \vec{w}_{1} tangent at P_{1} to the equator is

$$
\vec{w}_{1}=\langle-\sqrt{2} / 2, \sqrt{2} / 2,0\rangle
$$

and a vector \vec{w}_{2} tangent at P_{2} to the equator is

$$
\vec{w}_{2}=\langle\sqrt{2} / 2, \sqrt{2} / 2,0\rangle .
$$

Similarly we get

$$
\vec{w}_{3}=\langle\sqrt{2} / 2,-\sqrt{2} / 2,0\rangle \quad \text { and } \quad \vec{w}_{4}=\langle-\sqrt{2} / 2,-\sqrt{2} / 2,0\rangle .
$$

Using the formula for the velocity of the given trajectory from (c), we can compute its velocity vectors \vec{v}_{i} at P_{i} for $i=1,2,3,4$. We get

$$
\begin{array}{cc}
\vec{v}_{1}=\overrightarrow{\mathbf{v}}(\pi / 4)=\langle-\sqrt{2} / 2, \sqrt{2} / 2,-2\rangle & \vec{v}_{2}=\overrightarrow{\mathbf{v}}(3 \pi / 4)=\langle\sqrt{2} / 2, \sqrt{2} / 2,2\rangle \\
\vec{v}_{3}=\overrightarrow{\mathbf{v}}(5 \pi / 4)=\langle\sqrt{2} / 2,-\sqrt{2} / 2,-2\rangle & \vec{v}_{4}=\overrightarrow{\mathbf{v}}(7 \pi / 4)=\langle-\sqrt{2} / 2,-\sqrt{2} / 2,2\rangle
\end{array}
$$

Call θ_{i} one of the two angles between the trajectory and the equator at P_{i} for $i=1,2,3,4$. Then

$$
\begin{array}{ll}
\cos \left(\theta_{1}\right)=\frac{\vec{v}_{1} \cdot \vec{w}_{1}}{\left|\vec{v}_{1}\right|\left|\vec{w}_{1}\right|}=\frac{1}{\sqrt{5}} & \cos \left(\theta_{2}\right)=\frac{\vec{v}_{2} \cdot \vec{w}_{2}}{\left|\vec{v}_{2}\right|\left|\vec{w}_{2}\right|}=\frac{1}{\sqrt{5}} \\
\cos \left(\theta_{3}\right)=\frac{\vec{v}_{3} \cdot \vec{w}_{3}}{\left|\vec{v}_{3}\right|\left|\vec{w}_{3}\right|}=\frac{1}{\sqrt{5}} & \cos \left(\theta_{4}\right)=\frac{\vec{v}_{4} \cdot \vec{w}_{4}}{\left|\vec{v}_{4}\right|\left|\vec{w}_{4}\right|}=\frac{1}{\sqrt{5}}
\end{array}
$$

