18.02 Problem Set 9 - Solutions of Part B

Problem 1

a) If $\overrightarrow{\mathbf{F}}=x \hat{\boldsymbol{\jmath}}$, then curl $\overrightarrow{\mathbf{F}}=1$. Hence $\operatorname{Area}(R)=\iint_{R} 1 \mathrm{dA}=\iint_{R} \operatorname{curl} \overrightarrow{\mathbf{F}} \mathrm{dA}=$ $=\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\oint_{C} x \mathrm{~d} y$, where the third equal sign holds because of Green's theorem.
Similarly, if $\overrightarrow{\mathbf{F}}=-y \hat{\mathbf{\imath}}$, then $\operatorname{curl} \overrightarrow{\mathbf{F}}=1$ and $\operatorname{Area}(R)=\iint_{R} 1 \mathrm{dA}=\iint_{R} \operatorname{curl} \overrightarrow{\mathbf{F}} \mathrm{dA}=$
$=\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\oint_{C}-y \mathrm{~d} x$.
[Actually, one could use any $\overrightarrow{\mathbf{F}}$ well-defined and differentiable over R such that $\operatorname{curl} \overrightarrow{\mathbf{F}}=1$.]
b) The area is $3 \pi a^{2}$.

Call C_{1} the arc of cycloid and C_{2} the segment from $(0,0)$ to $(2 \pi a, 0)$, so that the boundary of R (when counterclockwise oriented) is $-C_{1}+C_{2}$. [$-C_{1}$ means: C_{1} with reversed orientation.]
Along $C_{1}, \mathrm{~d} x=a(1-\cos t) \mathrm{d} t$. Along $C_{2}, y=0$.
Using (a) we obtain
$\operatorname{Area}(R)=-\int_{C_{1}}-y \mathrm{~d} x+\int_{C_{2}}-y \mathrm{~d} x=\int_{0}^{2 \pi} a(1-\cos t) a(1-\cos t) \mathrm{d} t=$
$=\int_{0}^{2 \pi} a^{2}\left(1-2 \cos t+\cos ^{2} t\right) \mathrm{d} t=a^{2}\left[t-2 \sin t+\frac{t}{2}+\frac{\sin 2 t}{4}\right]_{0}^{2 \pi}=3 \pi a^{2}$.

Problem 2

a) For C equal to the circle of radius 2 centered at the origin (i.e. with equation $x^{2}+y^{2}=4$).

Call R the region of the plane enclosed by C.
If we define $\overrightarrow{\mathbf{F}}=\left(x^{2} y+y^{3}-y\right) \hat{\imath}+\left(3 x+2 y^{2} x+e^{y}\right) \hat{\boldsymbol{\jmath}}$, then $\operatorname{curl} \overrightarrow{\mathbf{F}}=\left(3+2 y^{2}\right)-\left(x^{2}+3 y^{2}-1\right)=4-x^{2}-y^{2}$.

Using Green's theorem

$$
\oint_{C}\left(x^{2} y+y^{3}-y\right) \mathrm{d} x+\left(3 x+2 y^{2} x+e^{y}\right) \mathrm{d} y=\iint_{R}\left(4-x^{2}-y^{2}\right) \mathrm{dA}
$$

and the right hand side achieves its maximum value if R is exactly the region of plane on which $4-x^{2}-y^{2} \geq 0$. This happens if and only if C has equation $x^{2}+y^{2}=4$.
b) The maximum value is 8π.

$$
\begin{aligned}
& \iint_{R}\left(4-x^{2}-y^{2}\right) \mathrm{dA}=\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{2}\left(4 r-r^{3}\right) \mathrm{d} r= \\
& =2 \pi\left[2 r^{2}-\frac{r^{4}}{4}\right]_{0}^{2}=2 \pi(8-4)=8 \pi
\end{aligned}
$$

Problem 3

a) Call R_{1} the region enclosed by C_{1}. From Problem Set 8-Exercise 1(a) we know (by direct computation) that $\oint_{C_{1}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=0$.
Now, $\operatorname{curl} \overrightarrow{\mathbf{F}}=2 x y-2 y$ and $\iint_{R_{1}}(2 x y-2 y) \mathrm{dA}=0$ because the reflection with respect to the x-axis $(x, y) \mapsto(x,-y)$ preserves R_{1} and dA but switches sign to the integrand $(2 x y-2 y)$.
b) Call R_{2} the region enclosed by C_{2}. From Problem Set 8 - Exercise 1(b) we know (by direct computation) that $\oint_{C_{2}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\frac{a^{4}}{12}-\frac{a^{3}}{3}$.
On the other hand, $\iint_{R_{2}} \operatorname{curl} \overrightarrow{\mathbf{F}} \mathrm{dA}=\int_{0}^{a} \int_{0}^{a-y}(2 x y-2 y) \mathrm{d} x \mathrm{~d} y=$
$=\int_{0}^{a}\left[x^{2} y-2 x y\right]_{x=0}^{x=a-y} \mathrm{~d} y=\int_{0}^{a}\left[(a-y)^{2} y-2(a-y) y\right] \mathrm{d} y=$
$=\int_{0}^{a}\left(a^{2} y-2 a y^{2}+y^{3}-2 a y+2 y^{2}\right) \mathrm{d} y=\left[\frac{a^{2}-2 a}{2} y^{2}+\frac{2-2 a}{3} y^{3}+\frac{1}{4} y^{4}\right]_{0}^{a}=$
$=\frac{a^{4}}{2}-a^{3}+\frac{2 a^{3}-2 a^{4}}{3}+\frac{a^{4}}{4}=\frac{a^{4}}{12}-\frac{a^{3}}{3}$.

