These are the solutions to Exam 4 of 18.02, Spring 2006.

Notice that these solutions contain some explanations in parentheses that were not required.

Problem 1
(20) Find the mass of the solid cylinder $0 \leq x^{2}+y^{2} \leq a^{2}, 0 \leq z \leq b$, with density $\delta(x, y, z)=x^{2} z$.

$$
M=\iiint_{\text {cylinder }} \delta \cdot d V
$$

Cylindrical coordinates: $\left\{\begin{array}{l}0 \leqslant r \leqslant a \\ 0 \leqslant z \leqslant b \\ 0 \leqslant \theta \leqslant 2 \pi\end{array}\right.$

$$
\begin{aligned}
\delta & =x^{2} z=(r \cos \theta)^{2} z=r^{2} z \cdot \cos ^{2} \theta \\
d V & =r d r d \theta d z \\
M & =\int_{0}^{b} \int_{0}^{2 \pi} \int_{0}^{a} r^{2} z \cos ^{2} \theta \cdot r d r d \theta d z= \\
& =\int_{0}^{b} z d z \cdot \int_{0}^{2 \pi} \cos ^{2} \theta d \theta \cdot \int_{0}^{a} r^{3} d r= \\
& =\left[\frac{z^{2}}{2}\right]_{0}^{b} \cdot\left(4 \cdot \frac{\pi}{4}\right) \cdot\left[\frac{r^{4}}{4}\right]_{0}^{a}= \\
& =\frac{b^{2}}{2} \cdot \pi \cdot \frac{a}{4}=\frac{\pi}{8} a^{4} b^{2} \\
{\left[\int_{0}^{2 \pi} \cos ^{2} \theta d \theta\right.} & =4 \cdot \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=4 \cdot \frac{\pi}{4} \text { from the table.] }
\end{aligned}
$$

Problem 2
(15) Express the average value of z^{10} on the surface of the upper hemisphere $x^{2}+y^{2}+z^{2}=1$, $z>0$, as an integral in spherical coordinates. (Do not evaluate.)

$$
\text { Average of }\left(z^{10}\right)=\frac{1}{\text { Area }} \iint_{\text {Surface }} z^{10} \cdot d S
$$

Upper hemisphere $=\left\{\begin{array}{l}\rho=1 \\ 0 \leq \theta \leq 2 \pi \\ 0 \leq \varphi \leq \pi / 2\end{array}\right.$

$$
\text { Area }=\frac{1}{2} 4 \pi \rho^{2}=2 \pi
$$

$z=\rho \cdot \cos \varphi=\cos \varphi$ on the hemisphere

$$
d S=\rho^{2} \sin \varphi d \varphi d \theta
$$

$\sin \varphi d \varphi d \theta$ on the hemisphere.
Average of $\left(z^{10}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \cos ^{10} \varphi \cdot \sin \varphi d \varphi d \theta$.

Problem 3
a) (5) Explain why $\boldsymbol{F}=\langle y, x+a z, y+1\rangle$ cannot be a gradient field unless $a=1$.

$$
\begin{gathered}
\vec{F}=P \hat{\imath}+Q \hat{\jmath}+R \hat{k} \\
\vec{F}=\nabla f \Rightarrow Q_{z}=R_{y}\left(\text { because } Q_{z}=f_{y z}=f_{z y}=R_{y}\right) \\
(x+e z)_{z}=(y+1)_{y} \Leftrightarrow a=1 .
\end{gathered}
$$

b) (10) Next, let $a=1$. Then $\boldsymbol{F}=\langle y, x+z, y+1\rangle=\nabla(x y+y z+z)$.

$$
\begin{aligned}
& \text { Next, let } a=1 \text {. Ines } F=\{y, x+z, y+1\rangle=\vee(x y+y z+z) \text {. } \\
& \text { Find } \int_{C}^{F} \cdot d r \text { for } C \text { given by } x=\cos ^{3} t, y=t, z=\sin ^{3} t, 0 \leq t \leq \pi \text {. }
\end{aligned}
$$

Fundamental theorem of calculus for line integrals: if $\vec{F}=\nabla f$, then

$$
\int_{C} \vec{F} \cdot d \vec{r}=f(\text { endpoint })-f(\text { storting point }) .
$$

Endpoint $=(-1, \pi, 0)$ at $t=\pi$.
Starting point $=(1,0,0)$ at $t=0$.

$$
\int_{C} \vec{F} \cdot d \vec{r}=f(-1, \pi, 0)-f(1,0,0)=(-1 \cdot \pi)-0=-\pi
$$

Problem 4
Consider $\boldsymbol{F}=\hat{\imath}$ and D the solid quarter of a ball given by $x^{2}+y^{2}+z^{2}<1, x<0$ and $z>0$. Let $S=S_{1}+S_{2}+S_{3}$ denote the surface that encloses D, with S_{1} the flat face in the $x y$-plane, S_{2} the flat face in the $y z$-plane, and S_{3} the curved face.
a) (15) State the divergence theorem, and use it to find the flux out of the curved face from the fluxes through the flat faces.
If Sencloses D (and \vec{F} is centimos and differentiable on S and D), then

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{D}(\operatorname{div} \vec{F}) d V .
$$

$\overline{\text { In ar case, }} \operatorname{div} \vec{F}=0$.

So $\iiint_{D}(\operatorname{div} \vec{F}) d V=0$.

$$
S_{1}: \hat{n}=\hat{k} \Rightarrow \vec{F} \cdot \hat{n}=0 \Rightarrow \iint_{S_{1}}(\vec{F} \cdot \hat{n}) d S=0 .
$$

$$
S_{2}: \hat{n}=\hat{\imath} \Rightarrow \vec{F} \cdot \hat{n}=1 \Rightarrow \iint_{S_{2}}^{S_{1}}(\vec{F} \cdot \hat{n}) d S=\operatorname{Area}\left(S_{2}\right)=\pi / 2
$$

$$
\begin{aligned}
\iint_{S_{3}}(\vec{F} \cdot \hat{n}) d S & \left.=\iiint_{D}(\operatorname{div} \vec{F}) d V-\iint_{S_{1}} \vec{F} \cdot \hat{n}\right) d S-\iint_{S_{2}}(\vec{F} \cdot \hat{n}) d S= \\
& =0-0-\frac{\pi}{2}=-\frac{\pi}{2}
\end{aligned}
$$

b) (10) Find the integrand $f(x, y)$ in the integral formula for the flux you found indirectly in part (a), that is,

$$
\text { flux of } \boldsymbol{F} \text { out of } S_{3}=\iint_{x^{2}+y^{2}<1, x<0} f(x, y) d x d y
$$

Do not evaluate the integral, and do not calculate the limits of integration.
(The region of integration is the projection (shadow) of S_{3} in the $x y$-plane.)

$$
\begin{aligned}
& g(x, y, z)=x^{2}+y^{2}+z^{2} \\
& d \vec{S}=\frac{\nabla g}{\partial z} d x d y=\frac{\langle 2 x, 2 y, 2 z\rangle}{2 z} d x d y=\left\langle\frac{x}{z}, \frac{y}{z}, 1\right\rangle d x d y \\
& \vec{F} \cdot d \vec{S}=\langle 1,0,0\rangle \cdot\left\langle\frac{x}{z}, \frac{y}{z}, 1\right\rangle d x d y=\frac{x}{z} d x d y \\
& \iint_{x^{2}+y^{2}<1, x<0} \frac{x}{z} d x d y=\iint_{x^{2}+y^{2}<1, x<0} \frac{x}{\sqrt{1-x^{2}-y^{2}}} d x d y\left(\begin{array}{c}
\text { since } \left.z=\sqrt{1-x^{2}-y^{2}}\right)
\end{array}\right)
\end{aligned}
$$

Problem 5
(25) Consider the surface S which is the portion of the plane $2 y+z=0$ in the cylinder $x^{2}+y^{2} \leq 1$. Its boundary curve C is the ellipse given by $x^{2}+y^{2}=1, z=-2 y$. State Stokes'. theorem, and confirm it by direct computation for $\boldsymbol{F}=z \hat{\imath}$ on S.
$S=$ surface with boundary C
If S and C are oriented compatibly (and \vec{F} is continuous and differentiable), then

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{S} .
$$

Evaluate LHS

$$
\begin{aligned}
& C: \begin{array}{l}
x=\cos \theta \\
y=\sin \theta, 0 \leqslant \theta \leqslant 2 \pi \\
z=-2 \sin \theta
\end{array} \\
& \int_{C} \vec{F} \cdot d \vec{r}=\int_{C} z d x= \\
& =\int_{0}^{2 \pi}(-2 \sin \theta)(-\sin \theta d \theta)= \\
& =2 \int_{0}^{2 \pi} \sin ^{2} \theta d \theta=8 \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta=
\end{aligned}
$$

$=8 \cdot \frac{\pi}{4}=2 \pi$ (from the table)

Evaluate RHS
$\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \partial x & \partial y & \partial z \\ z & 0 & 0\end{array}\right|=\hat{\jmath}$.
$\vec{N}=2 \hat{\jmath}+\hat{k}=$ hound to S.

$$
d \vec{S}=\frac{\vec{N}}{\vec{N} \cdot \hat{k}} d x d y=\vec{N} d x d y
$$

$$
(\vec{\nabla} \times \vec{F}) \cdot d \vec{S}=(\hat{\jmath} \cdot \vec{N}) d x d y=2 d \times d y
$$

Shadow $(S)=$ region in the $x y$-plane where $x^{2}+y^{2}<1$

$$
\begin{aligned}
& \iiint_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{S}=\iint_{\text {Shadow }(S)} 2 \cdot d x d y= \\
& \quad=2 \cdot \text { Area }(\text { shadow of } S)=2 \pi .
\end{aligned}
$$

Problem 6 - Extra credit (10 points)
(10) Let $\boldsymbol{F}=y \hat{\imath}+2 z \hat{\mathbf{\jmath}}$. Suppose that $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=0$ for every curve in the plane $a \mathbf{X}+b y+c z=d$. What can be said about a, b, c, and d ?
$S=$ region in the plane $a x+b y+c z=d$ enclosed by C.
Using Stokes $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S=\int_{C} \vec{F} \cdot d \vec{r}=0$

$$
\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial y & \partial z \\
y & 2 z & 0
\end{array}\right|=\langle-2,0,-1\rangle .
$$

\hat{n} is parallel to $\langle a, b, c\rangle$, so we get

$$
0=\iint_{S} \hat{n} \cdot\langle-2,0,-1\rangle d S \Leftrightarrow \hat{h} \cdot\langle-2,0,-1\rangle=0 \Leftrightarrow\langle a, b, c\rangle \cdot\langle-2,0,-1\rangle=0
$$

that is, $\quad-2 a-c=0$.

