18.02 Problem Set 8 - Solutions of Part B

Problem 1

a) $\int_{C_{1}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\int_{C_{1}} y^{2} \mathrm{~d} x+x^{2} y \mathrm{~d} y=\int_{0}^{2 \pi} \sin ^{2} \theta(-2 \sin \theta \mathrm{~d} \theta)+(2 \cos \theta)^{2} \sin \theta(\cos \theta \mathrm{~d} \theta)$
$=\int_{0}^{2 \pi}\left(-2 \sin ^{3} \theta+4 \cos ^{3} \theta \sin \theta\right) \mathrm{d} \theta=\left[2 \cos \theta-\frac{2}{3} \cos ^{3} \theta-\cos ^{4} \theta\right]_{0}^{2 \pi}=0$.

The ellipse C_{1} is parametrized by $x(\theta)=2 \cos \theta, y(\theta)=\sin \theta$ for $0 \leq \theta \leq 2 \pi$. So $\mathrm{d} x=-2 \sin \theta \mathrm{~d} \theta$ and $\mathrm{d} y=\cos \theta \mathrm{d} \theta$.
b) $\int_{C_{2}} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=\frac{a^{4}}{12}-\frac{a^{3}}{3}$.

The integrand $y^{2} \mathrm{~d} x+x^{2} y \mathrm{~d} y$ is equal to zero along the axes.
The segment from $(a, 0)$ to $(0, a)$ is parametrized as:
$x=a-y$ for $0 \leq y \leq a$, so that $\mathrm{d} x=-\mathrm{d} y$.
The line integral along this segment is $\int_{0}^{a} y^{2} \mathrm{~d} x+x^{2} y \mathrm{~d} y=$
$=\int_{0}^{a} y^{2}(-\mathrm{d} y)+(a-y)^{2} y \mathrm{~d} y=\int_{0}^{a}\left(y^{3}-(2 a+1) y^{2}+a^{2} y\right) \mathrm{d} y=$
$=\left[\frac{1}{4} y^{4}-\frac{2 a+1}{3} y^{3}+\frac{a^{2}}{2} y^{2}\right]_{0}^{a}=\frac{a^{4}}{4}-\frac{(2 a+1) a^{3}}{3}+\frac{a^{4}}{2}$.

Problem 2

a) $\nabla \theta=\left\langle\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}\right\rangle=\left\langle\frac{-y / x^{2}}{1+(y / x)^{2}}, \frac{1 / x}{1+(y / x)^{2}}\right\rangle=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$.
b) $\int_{C} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s=\theta(B)-\theta(A)=\theta_{2}-\theta_{1}$.

Consider the curve C defined by: $x(t)=1, y(t)=-1+t$ for $0 \leq t \leq 2$.
For this curve $B=(1,-1)$ and $A=(1,1)$, so $\theta_{2}=-\pi / 4$ and $\theta_{1}=\pi / 4$.
Hence, the line integral along this C is $-\pi / 2$.
c) $\int_{C_{1}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s=\pi \quad$ and $\quad \int_{C_{2}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s=-\pi$.

Along $C_{1}: \hat{\mathbf{T}}=-y \hat{\imath}+x \hat{\boldsymbol{\jmath}}$ and $\overrightarrow{\mathbf{F}}=-y \hat{\imath}+x \hat{\boldsymbol{\jmath}}$, so $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}}=1$.
Hence, $\int_{C_{1}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s=\int_{C_{1}} \mathrm{~d} s=$ length $\left(C_{1}\right)=\pi$.
Along $C_{2}: \hat{\mathbf{T}}=y \hat{\boldsymbol{\imath}}-x \hat{\boldsymbol{\jmath}}$ and $\overrightarrow{\mathbf{F}}=-y \hat{\imath}+x \hat{\boldsymbol{\jmath}}$, so $\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}}=-1$.
Hence, $\int_{C_{2}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s=-\int_{C_{2}} \mathrm{~d} s=-$ length $\left(C_{2}\right)=-\pi$.
d) $\overrightarrow{\mathbf{F}}$ is conservative in R_{2} and R_{3} but not in R_{1}.

It is conservative in R_{3} because we found a potential in (a).
It is also conservative in R_{2} : we can define a polar angle function θ on R_{2} in such a way that $-\pi<\theta(x, y)<\pi$.
In R_{1} it is not conservative, because we found in (c) two paths C_{1} and C_{2} between $(1,0)$ and $(0,1)$ such that $\int_{C_{1}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s \neq \int_{C_{2}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s$.
Explanation: The fundamental theorem of calculus for line integrals implies that, if $\overrightarrow{\mathbf{F}}$ is conservative on R_{2} (so that there exists a well-defined and differentiable potential f in R_{2} such that $\overrightarrow{\mathbf{F}}=\nabla f$), then for every simple closed curve C totally contained inside R_{2} we have $\int_{C} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}=0$.
As $\overrightarrow{\mathbf{F}}$ is not conservative in R_{1}, then we can find a simple closed curve C^{\prime} contained in R_{1} such that $\int_{C^{\prime}} \overrightarrow{\mathbf{F}} \cdot \mathrm{d} \overrightarrow{\mathbf{r}} \neq 0$.
Thus, the fact that $\overrightarrow{\mathbf{F}}$ is conservative in R_{2} but not in R_{1} just implies that the curve C^{\prime} cannot be totally contained in R_{2}. (C^{\prime} cannot be totally contained inside R_{3} either, because $\overrightarrow{\mathbf{F}}$ is conservative on R_{3}.)

Problem 3

a) $\operatorname{curl} \overrightarrow{\mathbf{F}}=\left(y r^{n}\right)_{x}-\left(x r^{n}\right)_{y}=n y r^{n-1} r_{x}-n x r^{n-1} r_{y}=n y x r^{n-2}-n x y r^{n-2}=0$ for every n.

We used that $r=\sqrt{x^{2}+y^{2}}$, so $\frac{\partial r}{\partial x}=\frac{x}{r}$ and $\frac{\partial r}{\partial y}=\frac{y}{r}$.
b) $g(r)=\left\{\begin{array}{ll}\frac{r^{n+2}}{n+2} & \text { if } n \neq-2 \\ \ln r & \text { if } n=-2\end{array}\right.$.

We want $\frac{\partial}{\partial x} g(r)=x r^{n}$ and $\frac{\partial}{\partial y} g(r)=y r^{n}$.
$\frac{\partial}{\partial x} g(r)=g^{\prime}(r) \frac{\partial r}{\partial x}=g^{\prime}(r) \frac{x}{r} \quad$ and $\quad \frac{\partial}{\partial y} g(r)=g^{\prime}(r) \frac{y}{r}$.
Hence $g^{\prime}(r)=r^{n+1}$.

Problem 4

a) If $\overrightarrow{\mathbf{F}}=y^{2} \hat{\boldsymbol{\imath}}+x^{2} y \hat{\boldsymbol{\jmath}}$ is a gradient, then $\frac{\partial}{\partial x}\left(x^{2} y\right)=\frac{\partial}{\partial y}\left(y^{2}\right)$, but $\left(x^{2} y\right)_{x}=2 x y \neq 2 y=\left(y^{2}\right)_{y}$.
b) We try to find a potential g setting $g\left(x_{0}, y_{0}\right)=\int_{C} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s$, where C is the path that goes $(0,0)$ to $\left(x_{0}, 0\right)$ along the x-axis and from $\left(x_{0}, 0\right)$ to $\left(x_{0}, y_{0}\right)$ parallel to the y-axis.
Then $\int_{C} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{T}} \mathrm{~d} s=\int_{0}^{y_{0}} x_{0}^{2} y \mathrm{~d} y=\frac{1}{2} x_{0}^{2} y_{0}^{2}$.
However, $\nabla g(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle \neq \overrightarrow{\mathbf{F}}$.
If we try to use a different path, the result changes but we never get $\nabla g=\overrightarrow{\mathbf{F}}$.
c) As we want $\nabla g=\overrightarrow{\mathbf{F}}$, we start with $g_{x}(x, y)=y^{2}$.

It gives $g(x, y)=x y^{2}+h(y)$.
Then $g_{y}(x, y)=x^{2} y$ gives $2 x y+h^{\prime}(y)=x^{2} y$.
There does not exist any $h(y)$ (which does not depends on x) such that $h^{\prime}(y)=x^{2} y-2 x y$.

