18.02 Problem Set 7 - Solutions of Part B

Problem 1

a) $f(r)=\left\{\begin{array}{ll}\frac{r}{50} & \text { for } 0 \leq r \leq 10 \\ 0 & \text { otherwise }\end{array}\right.$.

For $0 \leq a \leq b \leq 10, P(a \leq r \leq b)=\frac{1}{\pi(10)^{2}} \int_{0}^{2 \pi} \int_{a}^{b} r \mathrm{~d} r \mathrm{~d} \theta=$
$=\frac{1}{100 \pi}\left(\int_{0}^{2 \pi} \mathrm{~d} \theta\right)\left(\int_{a}^{b} r \mathrm{~d} r\right)=\int_{a}^{b} \frac{r}{50} \mathrm{~d} r$.
Therefore $f(r)=\frac{r}{50}$ for $0 \leq r \leq 10$.
b) $f(r)=\left\{\begin{array}{ll}4 r^{3} & \text { for } 0 \leq r \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.

For $0 \leq a \leq b \leq 1, P(a \leq r \leq b)=\frac{1}{M} \int_{0}^{\pi} \int_{a}^{b} y^{2} r \mathrm{~d} r \mathrm{~d} \theta=$
$=\frac{1}{M} \int_{0}^{\pi} \int_{a}^{b} r^{3} \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \theta=\frac{1}{M} \int_{0}^{\pi} \sin ^{2} \theta \mathrm{~d} \theta \int_{a}^{b} r^{3} \mathrm{~d} r=\int_{a}^{b} 4 r^{3} \mathrm{~d} r$
because $M=\frac{\pi}{8}$ from PS6-Problem 4 and $\int_{0}^{\pi} \sin ^{2} \theta \mathrm{~d} \theta=2 \int_{0}^{\pi / 2} \sin ^{2} \theta \mathrm{~d} \theta=\frac{\pi}{2}$
(from Notes - Table $3 B$ or using $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$).
Hence, $f(r)=4 r^{3}$ for $0 \leq r \leq 1$.

Problem 2

a) The average distance is $\bar{d}=\frac{32}{9 \pi} a$.

In Cartesian coordinates $\bar{d}=\frac{1}{\pi a^{2}} \int_{0}^{2 a} \int_{-\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x-x^{2}}} \sqrt{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y$ (or $\frac{2}{\pi a^{2}} \int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}} \sqrt{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y$).

In polar coordinates $\bar{d}=\frac{1}{\pi a^{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2 a \cos \theta} r \cdot r \mathrm{~d} r \mathrm{~d} \theta=\frac{2}{\pi a^{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 a \cos \theta} r^{2} \mathrm{~d} r \mathrm{~d} \theta=$
$=\frac{2}{\pi a^{2}} \int_{0}^{\frac{\pi}{2}} \frac{(2 a \cos \theta)^{3}}{3} \mathrm{~d} \theta=\frac{16 a}{3 \pi} \int_{0}^{\frac{\pi}{2}} \cos ^{3} \theta \mathrm{~d} \theta=\frac{32 a}{9 \pi}$
because $\int_{0}^{\pi / 2} \cos ^{3} \theta \mathrm{~d} \theta=\frac{2}{3}$ (using Notes - Table $3 B$
or $\left.\cos ^{3} \theta=\left(1-\sin ^{2} \theta\right) \cos \theta\right)$.
Therefore $\bar{d}=\frac{32}{9 \pi} a$.
b) The probability density is $f(r)=\left\{\begin{array}{ll}\frac{2 r}{\pi a^{2}} \cos ^{-1}\left(\frac{r}{2 a}\right) & \text { for } 0 \leq r \leq 2 a \\ 0 & \text { otherwise }\end{array}\right.$.

For $0 \leq b \leq c \leq 2 a$, exchange the order of integration:
$r \leq 2 a \cos \theta \quad \Leftrightarrow \quad \frac{r}{2 a} \leq \cos \theta \quad \Leftrightarrow \quad-\cos ^{-1}\left(\frac{r}{2 a}\right) \leq \theta \leq \cos ^{-1}\left(\frac{r}{2 a}\right)$.
$P(b \leq r \leq c)=\frac{1}{\pi a^{2}} \int_{b}^{c} \int_{-\cos ^{-1}(r / 2 a)}^{\cos ^{-1}(r / 2 a)} r \mathrm{~d} \theta \mathrm{~d} r=\int_{b}^{c} \frac{2 r}{\pi a^{2}} \cos ^{-1}\left(\frac{r}{2 a}\right) \mathrm{d} r$.
Hence, $f(r)=\frac{2 r}{\pi a^{2}} \cos ^{-1}\left(\frac{r}{2 a}\right)$ for $0 \leq r \leq 2 a$.
c) The probability density is $\left\{\begin{array}{ll}g(s)=\frac{2 s^{-1 / 3}}{3 \pi a^{2}} \cos ^{-1}\left(\frac{s^{1 / 3}}{2 a}\right) & \text { for } 0 \leq s \leq 8 a^{3} \\ 0 & \text { otherwise }\end{array}\right.$.

Let $s=r^{3}$ and $g(s)$ be the probability density of r^{3}.
For $0 \leq b \leq c \leq(2 a)^{3}=8 a^{3}, P(b \leq s \leq c)=P\left(b^{1 / 3} \leq r \leq c^{1 / 3}\right)=$ $=\int_{b^{1 / 3}}^{c^{1 / 3}} f(r) \mathrm{d} r=\int_{b}^{c} f\left(s^{1 / 3}\right) \frac{s^{-2 / 3}}{3} \mathrm{~d} s$
where $f(r)$ is the probability density from (b), because $r=s^{1 / 3}$ and $\mathrm{d} r=\frac{s^{-2 / 3}}{3} \mathrm{~d} s$.
Hence, $g(s)=f\left(s^{1 / 3}\right) \frac{s^{-2 / 3}}{3}=\frac{2 s^{-1 / 3}}{3 \pi a^{2}} \cos ^{-1}\left(\frac{s^{1 / 3}}{2 a}\right)$ for $0 \leq s \leq 8 a^{3}$.

Problem 3

a) The average is $\bar{x}=\frac{1}{4}$.

The probability density for x is $f(x)=\left\{\begin{array}{ll}3(x-1)^{2} & \text { for } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.
The tetrahedron is given by $\left\{\begin{array}{l}0 \leq x \leq 1 \\ x \leq y \leq 1 \\ y \leq z \leq 1\end{array}\right.$.
The volume of the tetrahedron is $V=\int_{0}^{1} \int_{x}^{1} \int_{y}^{1} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} \int_{x}^{1}(1-y) \mathrm{d} y \mathrm{~d} x=$
$=\int_{0}^{1}\left[y-\frac{y^{2}}{2}\right]_{y=x}^{y=1} \mathrm{~d} x=\int_{0}^{1}\left(1-\frac{1}{2}-x+\frac{x^{2}}{2}\right) \mathrm{d} x=\int_{0}^{1} \frac{(x-1)^{2}}{2} \mathrm{~d} x=$
$=\left[\frac{(x-1)^{3}}{6}\right]_{x=0}^{x=1}=\frac{1}{6}$.
The average is $\bar{x}=\frac{1}{V} \int_{0}^{1} \int_{x}^{1} \int_{y}^{1} x \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x=6 \int_{0}^{1} \int_{x}^{1} x(1-y) \mathrm{d} y \mathrm{~d} x=$
$=6 \int_{0}^{1} \frac{x-2 x^{2}+x^{3}}{2} \mathrm{~d} x=3\left[\frac{x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{4}\right]_{x=0}^{x=1}=3\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)=$
$=3 \frac{6-8+3}{12}=\frac{1}{4}$.
(Any order of integration, such as $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ can be used, but in the next part we want to integrate in y and z before x.)
The probability of x being between $0 \leq a$ and $b \leq 1$ is

$$
\begin{aligned}
& P(a<x<b)=\int_{a}^{b} f(x) \mathrm{d} x==\frac{1}{V} \int_{a}^{b} \int_{x}^{1} \int_{y}^{1} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x=\int_{a}^{b} \int_{x}^{1} 6(1-y) \mathrm{d} y \mathrm{~d} x= \\
& =\int_{a}^{b} 6 \frac{(1-x)^{2}}{2} \mathrm{~d} x=\int_{a}^{b} 3(1-x)^{2} \mathrm{~d} x
\end{aligned}
$$

Hence, $f(x)=3(1-x)^{2}$ for $0 \leq x \leq 1$ and $f(x)=0$ outside this interval.
b) $P\left(x<\frac{1}{2}\right)=\frac{7}{8} \quad$ and $\quad P\left(x<\frac{1}{4}\right)=\frac{37}{64}$.

From (a), we have
$P\left(x<\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} f(x) \mathrm{d} x=\int_{0}^{\frac{1}{2}} 3(1-x)^{2} \mathrm{~d} x=\left[(x-1)^{3}\right]_{0}^{\frac{1}{2}}=-\frac{1}{8}+1=\frac{7}{8}$.
$P\left(x<\frac{1}{4}\right)=\int_{0}^{\frac{1}{4}} f(x) \mathrm{d} x=\int_{0}^{\frac{1}{4}} 3(1-x)^{2} \mathrm{~d} x=\left[(x-1)^{3}\right]_{0}^{\frac{1}{4}}=-\frac{27}{64}+1=\frac{37}{64}$.
c) $\bar{x}_{1}=\frac{1}{n+1}$.
(Extra-credit, added at the end of the term separately from all other scores.)

In fact $\bar{x}_{1}=\frac{\int_{R} x_{1} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{n}}{\int_{R} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{n}}$, where R is given by $\left\{\begin{array}{l}0 \leq x_{n} \leq 1 \\ 0 \leq x_{n-1} \leq x_{n} \\ \cdots \\ 0 \leq x_{1} \leq x_{2}\end{array}\right.$.
The denominator is $\int_{0}^{1} \int_{0}^{x_{n-1}} \cdots \int_{0}^{x_{2}} d x_{1} \cdots \mathrm{~d} x_{n-1} \mathrm{~d} x_{n}=$
$=\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{3}} x_{2} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}=\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{4}} \frac{x_{3}^{2}}{2} \mathrm{~d} x_{3} \cdots \mathrm{~d} x_{n}=$
$=\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{5}} \frac{x_{4}^{3}}{2 \cdot 3} \mathrm{~d} x_{4} \cdots d x_{n}=\cdots=\left[\frac{x_{n}^{n}}{2 \cdot 3 \cdots n}\right]_{0}^{1}=\frac{1}{2 \cdot 3 \cdots n}$.
The numerator is $\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{2}} x_{1} d x_{1} \cdots \mathrm{~d} x_{n-1} \mathrm{~d} x_{n}=$
$=\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{3}} \frac{x_{2}^{2}}{2} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}=\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{4}} \frac{x_{3}^{3}}{2 \cdot 3} \mathrm{~d} x_{3} \cdots \mathrm{~d} x_{n}=$
$=\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{5}} \frac{x_{4}^{4}}{2 \cdot 3 \cdot 4} \mathrm{~d} x_{4} \cdots d x_{n}=\cdots=\left[\frac{x_{n}^{n}}{2 \cdot 3 \cdots n(n+1)}\right]_{0}^{1}=\frac{1}{2 \cdot 3 \cdots n(n+1)}$.
Hence $\bar{x}_{1}=\frac{2 \cdot 3 \cdots n}{2 \cdot 3 \cdots n(n+1)}=\frac{1}{n+1}$.

Problem 4

a) $\int_{0}^{1} \int_{0}^{1} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} \int_{2 u-1}^{2 u} \frac{1}{2 \sqrt{2 u-v}} \mathrm{~d} v \mathrm{~d} u=1$.

The region of integration is a square in the $x y$-plane with vertices $P=(0,0)$, $Q=(1,0), R=(1,1)$ and $S=(0,1)$.
In the $u v$-plane the same region becomes a parallelogram with vertices $P=$ $(0,0), Q=(1,2), R=(1,1)$ and $S=(0,-1)$.
In fact, $y^{2}=2 x-v=2 x-u$ and $0 \leq y^{2} \leq 1$ give $0 \leq 2 u-v \leq 1$, so that the region of integration is described (in terms of u and v) as $\left\{\begin{array}{l}0 \leq u \leq 1 \\ 2 u-1 \leq v \leq 2 u\end{array}\right.$.
Moreover the chain rule tells us that

$$
\binom{\mathrm{d} u}{\mathrm{~d} v}=\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)\binom{\mathrm{d} x}{\mathrm{~d} y}=\left(\begin{array}{cc}
1 & 0 \\
2 & -2 y
\end{array}\right)\binom{\mathrm{d} x}{\mathrm{~d} y}
$$

so that $\quad \mathrm{d} u \mathrm{~d} v=\left|\operatorname{det}\left(\begin{array}{cc}1 & 0 \\ 2 & -2 y\end{array}\right)\right| \mathrm{d} x \mathrm{~d} y=|-2 y| \mathrm{d} x \mathrm{~d} y=2 y \mathrm{~d} x \mathrm{~d} y$
(where the last equality holds because y is positive on our domain of integration). As $y=\sqrt{2 u-v}$ on the domain of integration, we can also write $\mathrm{d} x \mathrm{~d} y=\frac{\mathrm{d} u \mathrm{~d} v}{2 \sqrt{2 u-v}}$.
Hence $\int_{0}^{1} \int_{0}^{1} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} \int_{2 u-1}^{2 u} \frac{1}{2 \sqrt{2 u-v}} \mathrm{~d} v \mathrm{~d} u$.
Let's check our result evaluating the integral on the right:
$\int_{0}^{1} \int_{2 u-1}^{2 u} \frac{1}{2 \sqrt{2 u-v}} \mathrm{~d} v \mathrm{~d} u=\int_{0}^{1}[-\sqrt{2 u-v}]_{v=2 u-1}^{v=2 u} \mathrm{~d} u=\int_{0}^{1} 1 \cdot \mathrm{~d} u=1$.
b) $\int_{0}^{1} \int_{0}^{1} \mathrm{~d} x \mathrm{~d} y=\int_{-1}^{0} \int_{0}^{\frac{v+1}{2}} \frac{1}{2 \sqrt{2 u-v}} \mathrm{~d} u \mathrm{~d} v+\int_{0}^{1} \int_{\frac{v}{2}}^{\frac{v+1}{2}} \frac{1}{2 \sqrt{2 u-v}} \mathrm{~d} u \mathrm{~d} v+$

$$
+\int_{1}^{2} \int_{\frac{v}{2}}^{1} \frac{1}{2 \sqrt{2 u-v}} \mathrm{~d} u \mathrm{~d} v
$$

c) When $v=-\frac{1}{2}, \frac{v+1}{2}=\frac{1}{4}$ and the inner integral is $\int_{0}^{1 / 4} \frac{\mathrm{~d} u}{2 \sqrt{2 u+1}}$. Since the limits of integration are $0 \leq u \leq 1 / 4$, then
i) $P\left(\left.x=u \leq \frac{1}{4} \right\rvert\, v=-\frac{1}{2}\right)=1 \quad$ (always)
ii) $P\left(\left.x=u \geq \frac{1}{2} \right\rvert\, v=-1 / 2\right)=0 \quad$ (never)
iii) When $v=\frac{1}{2}, \frac{v}{2}=\frac{1}{4}$ and $\frac{v+1}{2}=\frac{3}{4}$, so the inner integral is

$$
\int_{1 / 4}^{3 / 4} \frac{1}{2}\left(2 u-\frac{1}{2}\right)^{-1 / 2} \mathrm{~d} u=\left[\frac{1}{2}\left(2 u-\frac{1}{2}\right)^{1 / 2}\right]_{1 / 4}^{3 / 4}=\frac{1}{2}
$$

Therefore, $P\left(\left.x=u \leq \frac{1}{4} \right\rvert\, v=\frac{1}{2}\right)=P\left(\left.u<\frac{1}{4} \right\rvert\, v=\frac{1}{2}\right)=0 \quad$ (never)
(the end point $u=\frac{1}{4}$ has probability 0).
Finally, the last probability requires calculation of an integral rather than just knowledge of the limits:

$$
\begin{aligned}
& P\left(\left.u \geq \frac{1}{2} \right\rvert\, v=\frac{1}{2}\right)=\frac{(\text { part })}{(\text { whole })}=1-\frac{1}{\sqrt{2}}, \text { since } \\
& (\text { part })=\int_{1 / 2}^{3 / 4} \frac{1}{2}\left(2 u-\frac{1}{2}\right)^{-1 / 2} \mathrm{~d} u=\left[\frac{1}{2}\left(2 u-\frac{1}{2}\right)^{1 / 2}\right]_{1 / 2}^{3 / 4}=\frac{1}{2}-\frac{1}{2 \sqrt{2}} \\
& \text { and (whole) }=\frac{1}{2} \text { was computed above. }
\end{aligned}
$$

Problem 5

The volume is $\frac{16}{3}$.

In fact the two cylinders are described (in Cartesian coordinates) by $C_{1}: y^{2}+z^{2} \leq 1$ and $C_{2}: x^{2}+z^{2} \leq 1$.
It is immediate to see that x and y range both between -1 and 1 : the problem is to bound z. As the solid is symmetric with respect to four reflections:

- $(x, y, z) \mapsto(-x, y, z)$
- $(x, y, z) \mapsto(x,-y, z)$
- $(x, y, z) \mapsto(x, y,-z)$
- $(x, y, z) \mapsto(y, x, z)$
we can integrate only over $\left\{\begin{array}{l}0 \leq x \leq 1 \\ 0 \leq y \leq x \\ 0 \leq z \leq \sqrt{1-x^{2}}\end{array}\right.$ and then multiply the result by $2^{4}=16$.
The limitation on z is $z \leq \sqrt{1-x^{2}}$ because when $y \leq x, \sqrt{1-x^{2}} \leq \sqrt{1-y^{2}}$, that is, in the section $y \leq x$ of the first octant, the surface of C_{2} is below the surface of C_{1}.
Hence $V=16 \int_{0}^{1} \int_{0}^{x} \int_{0}^{\sqrt{1-x^{2}}} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x=16 \int_{0}^{1} \int_{0}^{x} \sqrt{1-x^{2}} \mathrm{~d} y \mathrm{~d} x=$
$=16 \int_{0}^{1} x \sqrt{1-x^{2}} \mathrm{~d} x=16\left[\frac{\left(1-x^{2}\right)^{3 / 2}}{-3}\right]_{0}^{1}=\frac{16}{3}$.

Problem 6

The average distance is $\bar{d}=\frac{6}{5} a$.

The volume of the sphere is $V=\frac{4}{3} \pi a^{3}$.
The average distance is $\bar{d}=\frac{1}{V} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2 a \cos \varphi} \rho \cdot \rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta=$

$$
\begin{aligned}
& =\frac{3}{4 \pi a^{3}} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \frac{(2 a \cos \varphi)^{4}}{4} \sin \varphi \mathrm{~d} \varphi \mathrm{~d} \theta=\frac{3}{4 \pi a^{3}} \frac{16 a^{4}}{4} \int_{0}^{2 \pi}\left[-\frac{\cos ^{5} \varphi}{5}\right]_{0}^{\pi / 2} \mathrm{~d} \theta= \\
& =\frac{3 a}{5 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta=\frac{3 a}{5 \pi} 2 \pi=\frac{6}{5} a
\end{aligned}
$$

Problem 7

a) The center of mass $(\bar{x}, \bar{y}, \bar{z})$ has $\bar{x}=\bar{y}=0$ and

$$
\bar{z}=\frac{3}{\pi a^{2} h} \int_{0}^{2 \pi} \int_{0}^{\tan ^{-1}(a / h)} \int_{0}^{h / \cos \varphi} \rho^{3} \sin \varphi \cos \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta
$$

Invariance of the cone and δ under $(x, y, z) \mapsto(-x, y, z)$ tells us that $\bar{x}=0$.
Similarly, the symmetry $(x, y, z) \mapsto(x,-y, z)$ tells us that $\bar{y}=0$.
The mass is $M=\delta V$.
The integrand is found using $z=\rho \cos \phi, M=\frac{\pi a^{2} h \delta}{3}$ and
$\mathrm{d} V=\rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta$.
The limits of integration are found using
flat top: $z=h \Longleftrightarrow \rho \cos \phi=h \Longleftrightarrow \rho=\frac{h}{\cos \phi}$
cone side: $\phi=\tan (a / h)$.
b) The moment on inertia with respect to the z-axis is
$I_{z}=\iiint r^{2} \delta \mathrm{~d} V=\int_{0}^{2 \pi} \int_{\sin ^{-1}(b / a)}^{\pi-\sin ^{-1}(b / a)} \int_{b / \sin \varphi}^{a} \rho^{4} \delta \sin ^{3} \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta$.

The integrand is found using: $\mathrm{d} V=\rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta \quad$ and $\quad r^{2}=(\rho \sin \varphi)^{2}$. For the limits of integration: angle: $\sin ^{-1}(b / a)<\varphi<\pi-\sin ^{-1}(b / a) \quad$ and lower limit on $\rho: r=b \Longleftrightarrow \rho \sin \varphi=b \Longleftrightarrow \rho=b / \sin \varphi$.

