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CHRISTINE BREINER: Welcome back to recitation. In this video, what I'd like us to do is work on 
understanding simply connected regions in three dimensions. Well, there's one two-dimensional one, 
but the rest are three dimensions. So what I want you to do is for each of the following-- there are six 
different regions-- determine whether or not each of them is simply connected.  

 

So the first one is R3. The second one is if I take R3 and I remove the entire z-axis. The third one is if I 
take R3 and I remove 0. The fourth one is if I take R3 and remove a circle. The fifth one is R2 minus a line 
segment. And the sixth one is a solid torus.  

 

So a solid torus looks like a doughnut, and it includes the inside of the doughnut. This looks like a 
doughnut, hopefully, to you. And it's not hollow. It includes the inside.  

 

So what I'd like you to do, again, is determine whether or not each of these regions is simply connected. 
And why don't you pause the video while you work on that. And then bring the video back up when 
you're ready to check your work.  

 

OK, welcome back. So again, what we're interested in doing is understanding simply connectedness in 
another dimension. We did something already a while back with two dimensions, and so now we want 
to understand it better in three dimensions. So let's work through these.  

 

Well, I'm not going to write anything down for number one, because you should already know that R3 is 
simply connected. But if you weren't sure about it, you could think, for any closed curve I draw in R3, I 
can certainly get all of the inside of it contained in R3. Another way to think about it is that I can take 
that curve and I can collapse it down to a point, and remain in R3. So then the first one is an easy yes to 
simply connectedness. OK?  

 

So let's start on the second one, and I'm going to draw a little picture for us. So the second one is R3. I 
should go this way. This is x, y, and z, but then I remove the entire z-axis. So I should make this really 
dark so we know we're removing that part from R3. And I'm removing it all the way up to minus infinity 
in the z-direction and plus infinity in the z-direction.  



 

Now, the question is can I find any closed curve, that when I try and compress that closed curve down to 
a point, I can't do it while remaining inside this region that is all of R3 minus the z-axis. And the answer is 
there is a whole family of curves that do this. If I take a curve that goes around the z-axis, you'll notice 
that there's something on the inside of it-- regardless, of whether I slide it up or down-- there's a point 
on the inside of this curve that is not in the region I'm interested in. The region, again, is R3 minus the z-
axis.  

 

So there are two ways to think about this. You can think about if I were to take this curve and I were to 
put a surface across this curve so it was like a disk, there would be a point on the z-axis that would 
intersect it. Or you can think about it as saying, I have this curve and if I try and squeeze it down to as 
small as I can get it, I can't get it as small is I want without hitting the z-axis at some point. The z-axis is 
kind of in the way, right?  

 

Now, number three is a little different situation. Because in number three, I think this exact same 
picture, but instead of removing the whole z-axis, I just remove the origin. So let me try and draw a 
picture of that. So I'm going to make this a big open circle at the origin. That's not included in our region.  

 

So our region is all of R3 except the origin. And in two-dimensional space, this was not simply 
connected. But in three-dimensional space it is simply connected. So this is a little different situation 
than what you had previously.  

 

And so the idea is here, if I take a curve, even if I take a curve that's sitting in the xy plane that goes 
around the origin, the point is I can keep this curve in three-dimensional space, and I can wiggle it 
around, so that I can shrink it down to a point, and the origin doesn't get in the way. It doesn't keep me 
from doing that. So actually, this region, even though in two-dimensional space it was not simply 
connected, in three-dimensional space it is. And let's see if we understand the difference.  

 

The difference is in two-dimensional space, if I drew a curve on the xy plane around the origin, and I 
wanted to squish it down to a point, the only way to do that would be to bring the curve somehow 
through the origin. Right? I would be stuck having to pass the curve through the origin to shrink it down 
to a point. But in three space, I have another dimension.  

 



So a curve that sits on the xy plane, I can just kind of lift it a little bit away from the origin, and then I can 
shrink it down to a point without the origin getting in the way. So having that extra dimension means 
even though I remove one point, it's still actually a simply connected region. So maybe this is the first 
place we see that in the three dimensions we have a different case than we had in two dimensions 
removing the same kind of object.  

 

So I realize now I haven't been writing down whether these are simply connected or not. So I should 
write down this is simply connected. And maybe for number two I should go back and formally write not 
simply connected. So that we have this for posterity.  

 

Now the fourth one is R3 minus the circle. So let me see if I can draw a picture of that. And for the circle, 
it doesn't really matter where it is. I'm just going to draw one somewhere. So here's my circle. So 
everything is in my region except this circle.  

 

And the question: is it simply connected? And the answer is: no, the region is not simply connected, 
because of one particular problem. It's actually the same kind of problem you have when you remove 
the z-axis.  

 

And that is, if I draw a curve that goes around this circle-- any curve that goes around this circle-- notice 
that any way I try and move this curve and shrink it down to a point, this circle is going to get in the way 
for the same reason that the z-axis got in the way. Because this circle is closed, I can't slide the curve I'm 
interested in away from the circle and then shrink it down. OK. There's some sort of obstruction right 
here.  

 

And so it's fundamentally different than the case where we just had the origin, because we could take 
any curve and we could move it away from the origin, and then shrink it down to a point. And the origin 
didn't get in the way. But here, anywhere I try and move this curve, it's going to have to hit the circle if I 
want to move it away so I can shrink it to a point in my region. So this circle is preventing me from 
shrinking it down.  

 

OK, and then there are two more. And the fifth one is R2 minus a line segment. So now we're in two-
dimensional space. OK, and let me just pick a segment. OK. Now, this one is interesting.  

 



Oops. Again I did it. I forgot to write whether it's simply connected or not. Let me come back over to 
four for posterity. Not simply connected. OK, sorry about that.  

 

For the fifth one, because I'm in two dimensions, it's going to be not simply connected, but if I add a 
third dimension, it would become simply connected. So I want to explain why it's not simply connected 
here, and then I want to show you why in a third dimension it becomes simply connected. OK?  

 

The problem curves are the curves that do this, that go around this line segment. Because notice, if I 
want to try and contract this curve down to a point and I don't want to intersect that line segment, in 
order to do it I'd actually have to move it away from the line segment. I'd have to pass through the line 
segment. At some point, this curve would intersect that segment in order to be able to shrink it to a 
point in the region I'm interested in.  

 

So this segment is getting in the way-- we can think of it that way-- of allowing me to contract this down 
to a point. Actually also, when we talked about simply connectedness in two dimensions, it was easier. 
Because we could say, if we take any curve and we look at the disk that's spanned by the boundary of 
this curve, and we look at the region the curve encloses, notice that this segment is in that region. And 
there's no way of drawing this kind of curve without the segment being in that region, and that's how 
we know it's not simply connected.  

 

Now, in three dimensions, what happens? What if I took this exact same picture and I just made the z-
axis come out from the board? Why is that suddenly simply connected, whereas in the two-dimensional 
case it's not?  

 

And the reason is because in this same picture, I could take this same curve, and I could take this shaded 
thing, and I could push the shaded thing out of the xy plane. And so I'd still have the same boundary 
curve, but I'd have the shaded portion not hitting the segment. And so I can find some surface with this 
boundary that doesn't have this segment in the interior of the surface. And that's another way of 
thinking about simply connectedness.  

 

So in the two-dimensional case, it is not simply connected, but if I were to add a third dimension, this 
region would become simply connected. OK. Because I would have no problem for any curve finding 
some surface that had that curve as a boundary that didn't intersect that segment. So I could keep the 
surface in the region I was interested in. OK. So that would tell me it was simply connected.  



 

And then the last one is a solid torus. OK, and this one, we might not have dealt with solid tori before, 
but this is an interesting problem. OK, so there are fundamentally-- we say in math-- that there are two 
classes of curves that are interesting. We won't get into the exact terminology of what's happening, but 
there are two types of curves on the torus.  

 

One type of curve is the kind that goes around right here. OK. So it loops around the doughnut in that 
direction. But that type of curve is nice, because notice, that if I look at the surface in there, it's all inside 
the solid torus. So that's good. So that seems like that's a curve that is not telling us it's not simply 
connected. We'll say that.  

 

But there's another class of curves in the torus. And that's the class of curves that goes around-- this is a 
little harder to draw-- the top, but around the hole. OK? Around the hole. Now any surface I have that I 
try to draw-- any surface that's going to have that curve as a boundary-- is at some point forced to leave 
the solid torus. And the reason is really because of the hole in the middle. Right? That's really the reason 
it happens. OK.  

 

And so you can see the part right in here is on the surface, but it's not in the solid torus. So because I 
have a curve that any surface I draw that has that curve as a boundary is forced to leave the solid torus, 
it's a non-simply connected region. So we say not simply connected.  

 

OK. So I'm going to go back through real quickly and just remind us what was happening. And maybe use 
the language I was using at the end to describe the first examples, because that might help a little 
better. So let's go back to the first examples.  

 

OK, in the R3 example, again, number one, we know it's simply connected. We're not going to worry 
about it. OK.  

 

But let me draw number two. Maybe if I draw some shaded region, this will help us understand it a little 
bit better. Number two we established was not simply connected. And if you think about it, if you have a 
curve that goes around the z-axis, and you want to look at a surface that has that curve as its boundary, 
this surface certainly intersects the z-axis.  

 



The question is, can I keep this curve the way it is, and pull the surface away and have it not intersect 
the z-axis? And the answer is no. Any way I move the inside of the curve-- basically, what looks like a 
disk-- it's still going to intersect the z-axis somewhere. Right? And so it's definitely not simply connected.  

 

And the thing I was trying to point out in number three is that it is simply connected. If I shade the 
boundary of a curve sitting in the xy plane, and then I take that shaded disk and I push it up a little, then 
it no longer hits the origin. And I haven't fundamentally changed my curve at all. And so that's a way of 
understanding that it is actually simply connected. OK?  

 

So there are a couple of ways to think about it. And without being incredibly mathematically precise, 
these are some of the best ways we have of thinking about understanding simply connected or not 
simply connected.  

 

So again, we had six examples. Removing the z-axis from R3 was not simply connected. Removing the 
origin from R3 was still simply connected. Removing a circle from R3 was not simply connected for the 
same reason as the z-axis problem, because here was my disk, and any way I try to move this shaded 
surface, I can't keep it from intersecting this circle. And then number five was R2 minus a segment. It 
was not simply connected, but if I add another dimension, it is simply connected, for the same kind of 
reason that R3 minus the origin was. And then number six was the solid torus. Which now, it's kind of 
hard to see what the solid torus looks like. But we said, there's one curve that behaves fine, but the 
curve that goes all the way around the hole shows it's, in fact, not simply connected.  

 

So hopefully that was informative, and that's where I'll stop.   



MIT OpenCourseWare  
http://ocw.mit.edu  

18.02SC Multivariable Calculus 
Fall 2010  

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 


