Limits in Iterated Integrals

For most students, the trickiest part of evaluating multiple integrals by iteration is to put in the limits of integration. Fortunately, a fairly uniform procedure is available which works in any coordinate system. You must always begin by sketching the region; in what follows we'll assume you've done this.

1. Double integrals in rectangular coordinates.

Let's illustrate this procedure on the first case that's usually taken up: double integrals in rectangular coordinates. Suppose we want to evaluate over the region R pictured the integral

$$
\iint_{R} f(x, y) d y d x, \quad R=\text { region between } x^{2}+y^{2}=1 \quad \text { and } \quad x+y=1
$$

we are integrating first with respect to y. Then to put in the limits,

1. Hold x fixed, and let y increase (since we are integrating with respect to y). As the point (x, y) moves, it traces out a vertical line.
2. Integrate from the y-value where this vertical line enters the region R, to the y-value where it leaves R.
3. Then let x increase, integrating from the lowest x-value for which the vertical line intersects R, to the highest such x-value.

Carrying out this program for the region R pictured, the vertical line enters R where $y=1-x$, and leaves where $y=\sqrt{1-x^{2}}$.

The vertical lines which intersect R are those between $x=0$ and $x=1$. Thus we get for the limits:

$$
\iint_{R} f(x, y) d y d x=\int_{0}^{1} \int_{1-x}^{\sqrt{1-x^{2}}} f(x, y) d y d x
$$

To calculate the double integral, integrating in the reverse order $\iint_{R} f(x, y) d x d y$,

1. Hold y fixed, let x increase (since we are integrating first with respect to x). This traces out a horizontal line.
2. Integrate from the x-value where the horizontal line enters R to the x-value where it leaves.
3. Choose the y-limits to include all of the horizontal lines which intersect R.

Following this prescription with our integral we get:

$$
\iint_{R} f(x, y) d x d y=\int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) d x d y
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

