Double integration in polar coordinates

1. Compute $\iint_{R} f(x, y) d x d y$, where $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$ and R is the region inside the circle of radius 1 , centered at $(1,0)$.
Answer: First we sketch the region R

Both the integrand and the region support using polar coordinates. The equation of the circle in polar coordinates is $r=2 \cos \theta$, so using radial stripes the limits are

$$
\text { (inner) } r \text { from } 0 \text { to } 2 \cos \theta ; \text { (outer) } \theta \text { from }-\pi / 2 \text { to } \pi / 2
$$

Thus,

$$
\iint_{R} f(x, y) d x d y=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} \frac{1}{r} r d r d \theta=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} d r d \theta
$$

Inner integral: $2 \cos \theta$.
Outer integral: $\left.2 \sin \theta\right|_{-\pi / 2} ^{\pi / 2}=4$.
2. Find the area inside the cardioid $r=1+\cos \theta$.

Answer: The cardioid is so-named because it is heart-shaped.
Using radial stripes, the limits of integration are
(inner) r from 0 to $1+\cos \theta$; (outer) θ from 0 to 2π.
So, the area is

$$
\iint_{R} d A=\int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} r d r d \theta
$$

Inner integral: $\frac{(1+\cos \theta)^{2}}{2}$.
Side work:

$$
\int \cos ^{2} \theta d \theta=\int \frac{1+\cos 2 \theta}{2} d \theta=\frac{\theta}{2}+\frac{\sin 2 \theta}{4}+C \Rightarrow \int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\pi
$$

Outer integral:

$$
\int_{0}^{2 \pi} \frac{(1+\cos \theta)^{2}}{2}=\int_{0}^{2 \pi} \frac{1}{2}+\cos \theta+\frac{\cos ^{2} \theta}{2} d \theta=\pi+0+\frac{\pi}{2}=\frac{3 \pi}{2} .
$$

The area of the cardioid is $\frac{3 \pi}{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

