Double integration in polar coordinates

1. Compute $\iint_R f(x,y) \, dx \, dy$, where $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ and R is the region inside the circle of radius 1, centered at (1,0).

<u>Answer:</u> First we sketch the region R

Both the integrand and the region support using polar coordinates. The equation of the circle in polar coordinates is $r = 2\cos\theta$, so using radial stripes the limits are

(inner) r from 0 to $2\cos\theta$; (outer) θ from $-\pi/2$ to $\pi/2$.

Thus,

$$\iint_R f(x,y) \, dx \, dy = \int_{-\pi/2}^{\pi/2} \int_0^{2\cos\theta} \frac{1}{r} \, r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \int_0^{2\cos\theta} dr \, d\theta$$

Inner integral: $2\cos\theta$.

Outer integral: $2\sin\theta|_{-\pi/2}^{\pi/2} = 4.$

2. Find the area inside the cardioid $r = 1 + \cos \theta$.

Answer: The cardioid is so-named because it is heart-shaped.

Using radial stripes, the limits of integration are

(inner) r from 0 to $1 + \cos \theta$; (outer) θ from 0 to 2π .

So, the area is

$$\iint_R dA = \int_0^{2\pi} \int_0^{1+\cos\theta} r \, dr \, d\theta.$$

Inner integral: $\frac{(1 + \cos \theta)^2}{2}$. Side work:

$$\int \cos^2 \theta \, d\theta = \int \frac{1 + \cos 2\theta}{2} \, d\theta = \frac{\theta}{2} + \frac{\sin 2\theta}{4} + C \implies \int_0^{2\pi} \cos^2 \theta \, d\theta = \pi.$$

Outer integral:

$$\int_0^{2\pi} \frac{(1+\cos\theta)^2}{2} = \int_0^{2\pi} \frac{1}{2} + \cos\theta + \frac{\cos^2\theta}{2} \, d\theta = \pi + 0 + \frac{\pi}{2} = \frac{3\pi}{2}.$$

The area of the cardioid is $\frac{3\pi}{2}$.

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.