Distances to planes and lines

In this note we will look at distances to planes and lines. Our approach is geometric. Very broadly, we will draw a sketch and use vector techniques.
Please note is that our sketches are not oriented, drawn to scale or drawn in perspective. Rather they are a simple 'cartoon' which shows the important features of the problem.

1. Distance: point to plane:

Ingredients: i) A point P, ii) A plane with normal $\overrightarrow{\mathrm{N}}$ and containing a point Q.
The distance from P to the plane is $d=|\overrightarrow{\mathbf{P Q}}| \cos \theta=\left|\overrightarrow{\mathbf{P Q}} \cdot \frac{\overrightarrow{\mathbf{N}}}{|\mathbf{N}|}\right|$.
We will explain this formula by way of the following example.
Example 1: Let $P=(1,3,2)$. Find the distance from P to the plane $x+2 y=3$.
Answer: First we gather our ingredients.
$Q=(3,0,0)$ is a point on the plane (it is easy to find such a point).
$\mathbf{N}=$ normal to plane $=\mathbf{i}+2 \mathbf{j}$.
$R=$ point on plane closest to P (this is point unknown and we do not need to find it to find the distance). The figure shows that

$$
\text { distance }=|P R|=|\overrightarrow{\mathbf{P Q}}| \cos \theta=\left|\overrightarrow{\mathbf{P Q}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}\right|
$$

Computing $\overrightarrow{\mathbf{P Q}}=2 \mathbf{i}-3 \mathbf{j}-2 \mathbf{k}$ gives

$$
\text { distance }=\left|\overrightarrow{\mathbf{P Q}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}\right|=\left|\langle 2,-3,-2\rangle \cdot \frac{\langle 1,2,0\rangle}{\sqrt{5}}\right|=\frac{4}{\sqrt{5}}
$$

2. Distance: point to line:

Ingredients: i) A point P, ii) A line with direction vector \mathbf{v} and containing a point Q.
The distance from P to the line is $d=|\mathbf{Q P}| \sin \theta=\left|\overrightarrow{\mathbf{Q P}} \times \frac{\mathbf{v}}{|\mathbf{v}|}\right|$.
We will explain this formula by way of the following example.
Example 2: Let $P=(1,3,2)$, find the distance from the point P to the line through $(1,0,0)$ and $(1,2,0)$.
Answer: First we gather our ingredients.
$Q=(1,0,0)$ (this is easy to find).
$\mathbf{v}=\langle 1,2,0\rangle-\langle 1,0,0\rangle=2 \mathbf{j}$ is parallel to the line.
$R=$ point on line closest to P (this is point is unknown).
Using the relation $|\mathbf{A} \times \mathbf{B}|=|\mathbf{A}||\mathbf{B}| \sin \theta$, the figure shows that distance $=|P R|=|\overrightarrow{\mathbf{P Q}}| \sin \theta=\left|\overrightarrow{\mathbf{Q P}} \times \frac{\mathbf{v}}{|\mathbf{v}|}\right|$.

Computing: $\quad \overrightarrow{\mathbf{P Q}}=3 \mathbf{j}+2 \mathbf{k}$, which implies $\left|\overrightarrow{\mathbf{Q P}} \times \frac{\mathbf{v}}{|\mathbf{v}|}\right|=|(3 \mathbf{j}+2 \mathbf{k}) \times \mathbf{j}|=|-2 \mathbf{i}|=2$.
3. Distance between parallel planes:

The trick here is to reduce it to the distance from a point to a plane.
Example 3: Find the distance between the planes $x+2 y-z=4$ and $x+2 y-z=3$.
Both planes have normal $\mathbf{N}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$ so they are parallel.
Take any point on the first plane, say, $P=(4,0,0)$.
Distance between planes $=$ distance from P to second plane.
Choose $Q=(1,0,0)=$ point on second plane
$\Rightarrow d=\left|\overrightarrow{\mathbf{Q P}} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}\right|=|3 \mathbf{i} \cdot(\mathbf{i}+2 \mathbf{j}-\mathbf{k})| / \sqrt{6}=\sqrt{6} / 2$.
4. Distance between skew lines:

We place the lines in parallel planes and find the distance between the planes as in the previous example

As usual it's easy to find a point on each line. Thus, to find the parallel planes we only need to find the normal.

$$
\mathbf{N}=\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}},
$$

where $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are the direction vectors of the lines.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus
 Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

