Line Integrals of Vector Fields

In lecture, Professor Auroux discussed the non-conservative vector field

$$
\mathbf{F}=\langle-y, x\rangle
$$

For this field:

1. Compute the line integral along the path that goes from $(0,0)$ to $(1,1)$ by first going along the x-axis to $(1,0)$ and then going up one unit to $(1,1)$.
Answer: To compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ we break the curve into two pieces, then add the line integrals along each piece.
First, fix $y=0($ so $d y=0)$ and let x range from 0 to 1 .

$$
\int_{x=0}^{x=1} \mathbf{F} \cdot d \mathbf{r}=\int_{x=0}^{x=1}-y d x+x d y=\int_{0}^{1} 0 d x=0
$$

Next, fix $x=1$ (so $d x=0)$ and let y range from 0 to 1 :

$$
\int_{y=0}^{y=1} \mathbf{F} \cdot d \mathbf{r}=\int_{y=0}^{y=1}-y d x+1 d y=1
$$

We conclude that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=1$.
2. Compute the line integral along the path from $(0,0)$ to $(1,1)$ that first goes up the y-axis to $(0,1)$.

Answer: Again we split the curve into two parts. We start by fixing $x=0$ (so $d x=0$) and letting y range from 0 to 1 :

$$
\int_{y=0}^{y=1}-y d x+0 d y=0
$$

Next fix $y=1$ and let x range from 0 to 1 :

$$
\int_{x=0}^{x=1}-1 d x+x d y=-\left.x\right|_{0} ^{1}=-1
$$

Here, $\int_{C} \mathbf{F} \cdot d \mathbf{r}=-1$.
3. Should you expect your answers to the preceding problems to be the same? Why or why not?
Answer: If \mathbf{F} were conservative, the value of a line integral starting at $(0,0)$ and ending at $(1,1)$ would be independent of the path taken. We know from lecture that \mathbf{F} is nonconservative, so we don't expect line integrals along different paths to have the same values.
4. Compute the line integral of \mathbf{F} along a path that runs counterclockwise around the unit circle.

Answer: We parametrize C by $x=\cos \theta, y=\sin \theta$ with $0 \leq \theta<2 \pi$. Then $d x=-\sin \theta d \theta$, $d y=\cos \theta d \theta$, and:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{\theta=0}^{\theta=2 \pi}-\sin \theta d x+\cos \theta d y=\int_{0}^{2 \pi}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) d \theta=2 \pi
$$

5. Should your answer to the previous problem be 0 ? Why or why not?

Answer: The vector field is not conservative, so its line integral around a closed curve need not be zero.

Answer the following questions for the field

$$
\mathbf{F}=\langle 0, x\rangle
$$

6. Compute the line integral along the path that goes from $(0,0)$ to $(1,1)$ by first going along the x-axis to $(1,0)$ and then going up one unit to $(1,1)$.
Answer: We split the curve into two pieces as in problem (1).

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\left(\int_{x=0}^{x=1} 0 d x+x d y\right)+\left(\int_{y=0}^{y=1} 0 d x+1 d y\right)=1
$$

7. Compute the line integral along the path from $(0,0)$ to $(1,1)$ which first goes up the y-axis to $(0,1)$.
Answer: Proceed as in problem (2):

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\left(\int_{y=0}^{y=1} 0 d x+0 d y\right)+\left(\int_{x=0}^{x=1} 0 d x+x d y\right)=0
$$

8. Compute the line integral of \mathbf{F} along the line segment from $(0,0)$ to $(1,1)$.

Answer: Parametrize C by $x=y=t$ where $0 \leq t \leq 1$. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t=0}^{t=1} 0 d t+t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{1}=1 / 2
$$

9. Is the vector field $\mathbf{F}=\langle 0, x\rangle$ conservative? How do you know?

Answer: The field \mathbf{F} is not conservative. If it were, the line integrals in problems 6,7 and 8 would depend only on the endpoints of C and so would have the same values.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

