Problems: Vector Fields

1. Sketch the following vector fields. Pay attention to their names because we will be encountering these fields frequently.
(a) Force, constant gravitational field $\mathbf{F}(x, y)=-g \mathbf{j}$.
(b) Velocity $\quad \mathbf{V}(x, y)=\frac{x}{x^{2}+y^{2}} \mathbf{i}+\frac{y}{x^{2}+y^{2}} \mathbf{j}=\langle x, y\rangle / r^{2}$. (This is a shrinking radial field -like water pouring from a source at $(0,0)$.)
(c) Unit tangential field $\mathbf{F}=\langle-y, x\rangle / r$.
(d) Gradient $\mathbf{F}=\nabla f$, where $f(x, y)=\frac{x y}{3}$ and $\nabla f=\left\langle\frac{y}{3}, \frac{x}{3}\right\rangle$.
2. Compute the gradient field of $f(x, y)=x y^{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

