Solutions to linear systems

1. Consider the system of equations

$$
\begin{array}{r}
x+2 y+3 z=1 \\
4 x+5 y+6 z=2 \\
7 x+8 y+c z=3
\end{array}
$$

a) Write the system in matrix form.
b) For which values of c is there exactly one solution?
c) For which values of c are there either 0 or infinitely many solutions?
d) Take the corresponding homogeneous system

$$
\begin{array}{r}
x+2 y+3 z=0 \\
4 x+5 y+6 z=0 \\
7 x+8 y+c z=0
\end{array}
$$

For the value(s) of c found in part (c) give all the solutions.
Answer: a) $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & c\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
b) There is exactly one solution when the coefficient matrix has an inverse (i.e., is invertible). This happens when the determinant is not zero.

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & c
\end{array}\right|=1(5 c-48)-2(4 c-42)+3(32-35)=-3 c+27=0 \Leftrightarrow c=9
$$

There is exactly one solution as long as $c \neq 9$.
c) This is just the complement of part (b): there are zero or infinitely many solutions when $c=9$.
d) Setting $c=9$ our coefficient matrix is $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$. Thinking of matrix multiplication as a series of dot products between rows of the left matrix and column(s) of the right one we see that in solving

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

we are looking for vectors $\langle x, y, z\rangle$ that are orthogonal to each of the rows of A. Since $\operatorname{det}(A)=0$, the rows are all in a plane and we can find orthogonal vectors by taking a cross product of (say) the first two rows.

$$
\langle 1,2,3\rangle \times\langle 4,5,6\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right|=\langle-3,6,-3\rangle
$$

Since scaling will preserve orthogonality, all the solutions are scalar multiples, i.e., all the solutions are of the form $(x, y, z)=(-3 a, 6 a,-3 a)$. We can make this a little nicer by removing the common factor of three,

$$
(x, y, z)=(-a, 2 a,-a)=a(-1,2,-1) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

