Determinants 2. Area and Volume

Area and volume interpretation of the determinant:

$$
\begin{align*}
& \pm\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=\text { area of parallelogram with edges } \mathbf{A}=\left(a_{1}, a_{2}\right), \mathbf{B}=\left(b_{1}, b_{2}\right) \tag{1}\\
& \pm\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\text { volume of parallelepiped with edges row-vectors } \mathbf{A}, \mathbf{B}, \mathbf{C} \tag{2}
\end{align*}
$$

In each case, choose the sign which makes the left side non-negative.
Proof of (1). We begin with two preliminary observations.
Let θ be the positive angle from \mathbf{A} to \mathbf{B}; we assume it is $<\pi$, so that \mathbf{A} and \mathbf{B} have the general positions illustrated.

Let $\theta^{\prime}=\pi / 2-\theta$, as illustrated. Then $\cos \theta^{\prime}=\sin \theta$.
Draw the vector \mathbf{B}^{\prime} obtained by rotating \mathbf{B} to the right by $\pi / 2$. The picture shows that $\mathbf{B}^{\prime}=\left(b_{2},-b_{1}\right)$, and $\left|\mathbf{B}^{\prime}\right|=|\mathbf{B}|$.

To prove (1) now, we have a standard formula of Euclidean geometry,

$$
\text { area of parallelogram }=|\mathbf{A} \| \mathbf{B}| \sin \theta
$$

$$
=\left|\mathbf{A} \| \mathbf{B}^{\prime}\right| \cos \theta^{\prime}, \quad \text { by the above observations }
$$

$$
=\mathbf{A} \cdot \mathbf{B}^{\prime}, \quad \text { by the geometric definition of dot product }
$$

$$
=a_{1} b_{2}-a_{2} b_{1} \quad \text { by the formula for } \mathbf{B}^{\prime}
$$

This proves the area interpretation (1) if \mathbf{A} and \mathbf{B} have the position shown. If their positions are reversed, then the area is the same, but the sign of the determinant is changed, so the formula has to read,

$$
\text { area of parallelogram }= \pm\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|, \quad \text { whichever sign makes the right side } \geq 0
$$

The proof of the analogous volume formula (2) will be made when we study the scalar triple product $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$.

Generalizing (1) and (2), $n \times n$ determinants can be interpreted as the hypervolume in n-space of a n-dimensional parallelotope.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

