E. 18.02 ExERCISES

1. Vectors and Matrices

1A. Vectors

Definition. A direction is just a unit vector. The direction of \mathbf{A} is defined by

$$
\operatorname{dir} \mathbf{A}=\frac{\mathbf{A}}{|\mathbf{A}|}, \quad(\mathbf{A} \neq \mathbf{0})
$$

it is the unit vector lying along \mathbf{A} and pointed like \mathbf{A} (not like $-\mathbf{A}$).
1A-1 Find the magnitude and direction (see the definition above) of the vectors
a) $\mathbf{i}+\mathbf{j}+\mathbf{k}$
b) $2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$
c) $3 \mathbf{i}-6 \mathbf{j}-2 \mathbf{k}$

1A-2 For what value(s) of c will $\frac{1}{5} \mathbf{i}-\frac{1}{5} \mathbf{j}+c \mathbf{k}$ be a unit vector?
$\mathbf{1 A - 3}$ a) If $P=(1,3,-1)$ and $Q=(0,1,1)$, find $\mathbf{A}=P Q,|\mathbf{A}|$, and $\operatorname{dir} \mathbf{A}$.
b) A vector \mathbf{A} has magnitude 6 and direction $(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}) / 3$. If its tail is at $(-2,0,1)$, where is its head?

1A-4 a) Let P and Q be two points in space, and X the midpoint of the line segment $P Q$. Let O be an arbitrary fixed point; show that as vectors, $O X=\frac{1}{2}(O P+O Q)$.
b) With the notation of part (a), assume that X divides the line segment $P Q$ in the ratio $r: s$, where $r+s=1$. Derive an expression for $O X$ in terms of $O P$ and $O Q$.

1A-5 What are the $\mathbf{i} \mathbf{j}$-components of a plane vector \mathbf{A} of length 3 , if it makes an angle of 30° with \mathbf{i} and 60° with \mathbf{j}. Is the second condition redundant?

1A-6 A small plane wishes to fly due north at 200 mph (as seen from the ground), in a wind blowing from the northeast at 50 mph . Tell with what vector velocity in the air it should travel (give the $\mathbf{i} \mathbf{j}$-components).
$\mathbf{1 A - 7}$ Let $\mathbf{A}=a \mathbf{i}+b \mathbf{j}$ be a plane vector; find in terms of a and b the vectors \mathbf{A}^{\prime} and $\mathbf{A}^{\prime \prime}$ resulting from rotating \mathbf{A} by 90°
a) clockwise
b) counterclockwise.
(Hint: make \mathbf{A} the diagonal of a rectangle with sides on the x and y-axes, and rotate the whole rectangle.)
c) Let $\mathbf{i}^{\prime}=(3 \mathbf{i}+4 \mathbf{j}) / 5$. Show that \mathbf{i}^{\prime} is a unit vector, and use the first part of the exercise to find a vector \mathbf{j}^{\prime} such that $\mathbf{i}^{\prime}, \mathbf{j}^{\prime}$ forms a right-handed coordinate system.

1A-8 The direction (see definition above) of a space vector is in engineering practice often given by its direction cosines. To describe these, let $\mathbf{A}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ be a space vector, represented as an origin vector, and let α, β, and γ be the three angles $(\leq \pi)$ that \mathbf{A} makes respectively with \mathbf{i}, \mathbf{j}, and \mathbf{k}.
a) Show that $\operatorname{dir} \mathbf{A}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}$. (The three coefficients are called the direction cosines of \mathbf{A}.)
b) Express the direction cosines of \mathbf{A} in terms of a, b, c; find the direction cosines of the vector $-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$.
c) Prove that three numbers t, u, v are the direction cosines of a vector in space if and only if they satisfy $t^{2}+u^{2}+v^{2}=1$.

1A-9 Prove using vector methods (without components) that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and half its length. (Call the two sides A and B.)

1A-10 Prove using vector methods (without components) that the midpoints of the sides of a space quadrilateral form a parallelogram.

1A-11 Prove using vector methods (without components) that the diagonals of a parallelogram bisect each other. (One way: let X and Y be the midpoints of the two diagonals; show $X=Y$.)

1A-12* Label the four vertices of a parallelogram in counterclockwise order as OPQR. Prove that the line segment from O to the midpoint of PQ intersects the diagonal PR in a point X that is $1 / 3$ of the way from P to R .
(Let $\mathbf{A}=\mathrm{OP}$, and $\mathbf{B}=\mathrm{OR}$; express everything in terms of \mathbf{A} and \mathbf{B}.)
$\mathbf{1 A} \mathbf{- 1 3}{ }^{*}$ a) Take a triangle $P Q R$ in the plane; prove that as vectors $P Q+Q R+R P=\mathbf{0}$.
b) Continuing part a), let \mathbf{A} be a vector the same length as $P Q$, but perpendicular to it, and pointing outside the triangle. Using similar vectors \mathbf{B} and \mathbf{C} for the other two sides, prove that $\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{0}$. (This only takes one sentence, and no computation.)
$\mathbf{1 A - 1 4 *}$ Generalize parts a) and b) of the previous exercise to a closed polygon in the plane which doesn't cross itself (i.e., one whose interior is a single region); label its vertices $P_{1}, P_{2}, \ldots, P_{n}$ as you walk around it.
$\mathbf{1 A - 1 5}$ * Let P_{1}, \ldots, P_{n} be the vertices of a regular n-gon in the plane, and O its center; show without computation or coordinates that $O P_{1}+O P_{2}+\ldots+O P_{n}=\mathbf{0}$,
a) if n is even;
b) if n is odd.

1B. Dot Product

1B-1 Find the angle between the vectors
a) $\mathbf{i}-\mathbf{k}$ and $4 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$
b) $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}-\mathbf{j}+\mathbf{k}$.

1B-2 Tell for what values of c the vectors $c \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ will
a) be orthogonal
b) form an acute angle

1B-3 Using vectors, find the angle between a longest diagonal $P Q$ of a cube, and
a) a diagonal $P R$ of one of its faces;
b) an edge $P S$ of the cube.
(Choose a size and position for the cube that makes calculation easiest.)
1B-4 Three points in space are $P:(a, 1,-1), \quad Q:(0,1,1), \quad R:(a,-1,3)$. For what value(s) of a will $P Q R$ be
a) a right angle
b) an acute angle ?

1B-5 Find the component of the force $\mathbf{F}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ in
a) the direction $\frac{\mathbf{i}+\mathbf{j}-\mathbf{k}}{\sqrt{3}}$
b) the direction of the vector $3 \mathbf{i}+2 \mathbf{j}-6 \mathbf{k}$.

1B-6 Let O be the origin, c a given number, and \mathbf{u} a given direction (i.e., a unit vector). Describe geometrically the locus of all points P in space that satisfy the vector equation

$$
O P \cdot \mathbf{u}=c|O P|
$$

In particular, tell for what value(s) of c the locus will be (Hint: divide through by $|O P|$):
a) a plane
b) a ray (i.e., a half-line)
c) empty
$\mathbf{1 B - 7}$ a) Verify that $\mathbf{i}^{\prime}=\frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}$ and $\mathbf{j}^{\prime}=\frac{-\mathbf{i}+\mathbf{j}}{\sqrt{2}}$ are perpendicular unit vectors that form a right-handed coordinate system
b) Express the vector $\mathbf{A}=2 \mathbf{i}-3 \mathbf{j}$ in the $\mathbf{i}^{\prime} \mathbf{j}^{\prime}$-system by using the dot product.
c) Do b) a different way, by solving for \mathbf{i} and \mathbf{j} in terms of \mathbf{i}^{\prime} and \mathbf{j}^{\prime} and then substituting into the expression for \mathbf{A}.

1B-8 The vectors $\mathbf{i}^{\prime}=\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}, \mathbf{j}^{\prime}=\frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}}$, and $\mathbf{k}^{\prime}=\frac{\mathbf{i}+\mathbf{j}-2 \mathbf{k}}{\sqrt{6}}$ are three mutually perpendicular unit vectors that form a right-handed coordinate system.
a) Verify this.
b) Express $\mathbf{A}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ in this system (cf. 1B-7b)

1B-9 Let A and Be two plane vectors, neither one of which is a multiple of the other. Express \mathbf{B} as the sum of two vectors, one a multiple of \mathbf{A}, and the other perpendicular to \mathbf{A}; give the answer in terms of \mathbf{A} and \mathbf{B}.
(Hint: let $\mathbf{u}=\operatorname{dir} \mathbf{A}$; what's the \mathbf{u}-component of \mathbf{B} ?)
1B-10 Prove using vector methods (without components) that the diagonals of a parallelogram have equal lengths if and only if it is a rectangle.

1B-11 Prove using vector methods (without components) that the diagonals of a parallelogram are perpendicular if and only if it is a rhombus, i.e., its four sides are equal.

1B-12 Prove using vector methods (without components) that an angle inscribed in a semicircle is a right angle.

1B-13 Prove the trigonometric formula: $\cos \left(\theta_{1}-\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2}$.
(Hint: consider two unit vectors making angles θ_{1} and θ_{2} with the positive x-axis.)
1B-14 Prove the law of cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \theta$ by using the algebraic laws for the dot product and its geometric interpretation.

1B-15* The Cauchy-Schwarz inequality

a) Prove from the geometric definition of the dot product the following inequality for vectors in the plane or space; under what circumstances does equality hold?

$$
\begin{equation*}
|\mathbf{A} \cdot \mathbf{B}| \leq|\mathbf{A}||\mathbf{B}| . \tag{*}
\end{equation*}
$$

b) If the vectors are plane vectors, write out what this inequality says in terms of $\mathbf{i} \mathbf{j}$-components.
c) Give a different argument for the inequality $\left(^{*}\right)$ as follows (this argument generalizes to n-dimensional space):
i) for all values of t, we have $(\mathbf{A}+t \mathbf{B}) \cdot(\mathbf{A}+t \mathbf{B}) \geq 0$;
ii) use the algebraic laws of the dot product to write the expression in (i) as a quadratic polynomial in t;
iii) by (i) this polynomial has at most one zero; this implies by the quadratic formula that its coefficients must satisfy a certain inequality - what is it?

1C. Determinants

1C-1 Calculate the value of the determinants a) $\left|\begin{array}{rr}1 & 4 \\ 2 & -1\end{array}\right| \quad$ b) $\left|\begin{array}{rr}3 & -4 \\ -1 & -2\end{array}\right|$
1C-2 Calculate $\left|\begin{array}{rrr}-1 & 0 & 4 \\ 1 & 2 & 2 \\ 3 & -2 & -1\end{array}\right|$ using the Laplace expansion by the cofactors of:
a) the first row
b) the first column

1C-3 Find the area of the plane triangle whose vertices lie at
a) $(0,0),(1,2),(1,-1)$;
b) $(1,2),(1,-1),(2,3)$.

1C-4 Show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2}\end{array}\right|=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)$.
(This type of determinant is called a Vandermonde determinant.)

1C-5 a) Show that the value of a 2×2 determinant is unchanged if you add to the second row a scalar multiple of the first row.
b) Same question, with "row" replaced by "column".

1C-6 Use a Laplace expansion and Exercise 5a to show the value of a 3×3 determinant is unchanged if you add to the second row a scalar multiple of the third row.

1C-7 Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ both range over all unit vectors.
Find the maximum value of the function $\quad f\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right|$.

1C-8* The base of a parallelepiped is a parallelogram whose edges are the vectors \mathbf{b} and \mathbf{c}, while its third edge is the vector \mathbf{a}. (All three vectors have their tail at the same vertex; one calls them "coterminal".)
a) Show that the volume of the parallelepiped $\mathbf{a b c}$ is $\pm \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$.
b) Show that $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=$ the determinant whose rows are respectively the components of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
(These two parts prove the volume interpretation of a 3×3 determinant.

1C-9 Use the formula in Exercise 1C-8 to calculate the volume of a tetrahedron having as vertices $(0,0,0),(0,-1,2),(0,1,-1),(1,2,1)$. (The volume of a tetrahedron is $\frac{1}{3}$ (base)(height).)

1C-10 Show by using Exercise 8 that if three origin vectors lie in the same plane, the determinant having the three vectors as its three rows has the value zero.

1D. Cross Product

1D-1 Find $\mathbf{A} \times \mathbf{B}$ if
a) $\mathbf{A}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}, \quad \mathbf{B}=2 \mathbf{i}-\mathbf{j}-\mathbf{k}$
b) $\mathbf{A}=2 \mathbf{i}-3 \mathbf{k}, \mathbf{B}=\mathbf{i}+\mathbf{j}-\mathbf{k}$.

1D-2 Find the area of the triangle in space having its vertices at the points

$$
P:(2,0,1), Q:(3,1,0), R:(-1,1,-1)
$$

1D-3 Two vectors \mathbf{i}^{\prime} and \mathbf{j}^{\prime} of a right-handed coordinate system are to have the directions respectively of the vectors $\mathbf{A}=2 \mathbf{i}-\mathbf{j}$ and $\mathbf{B}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$. Find all three vectors $\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{k}^{\prime}$.

1D-4 Verify that the cross product \times does not in general satisfy the associative law, by showing that for the particular vectors $\mathbf{i}, \mathbf{i}, \mathbf{j}$, we have $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} \neq \mathbf{i} \times(\mathbf{i} \times \mathbf{j})$.

1D-5 What can you conclude about \mathbf{A} and \mathbf{B}
a) if $|\mathbf{A} \times \mathbf{B}|=|\mathbf{A}||\mathbf{B}|$;
b) if $|\mathbf{A} \times \mathbf{B}|=\mathbf{A} \cdot \mathbf{B}$.

1D-6 Take three faces of a unit cube having a common vertex P; each face has a diagonal ending at P; what is the volume of the parallelepiped having these three diagonals as coterminous edges?

1D-7 Find the volume of the tetrahedron having vertices at the four points

$$
P:(1,0,1), Q:(-1,1,2), R:(0,0,2), S:(3,1,-1)
$$

Hint: volume of tetrahedron $=\frac{1}{6}$ (volume of parallelepiped with same 3 coterminous edges)
1D-8 Prove that $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$, by using the determinantal formula for the scalar triple product, and the algebraic laws of determinants in Notes D.

1D-9 Show that the area of a triangle in the $x y$-plane having vertices at $\left(x_{i}, y_{i}\right)$, for $i=1,2,3$, is given by the determinant $\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$. Do this two ways:
a) by relating the area of the triangle to the volume of a certain parallelepiped
b) by using the laws of determinants (p. L. 1 of the notes) to relate this determinant to the 2×2 determinant that would normally be used to calculate the area.

1E. Equations of Lines and Planes

1E-1 Find the equations of the following planes:
a) through $(2,0,-1)$ and perpendicular to $\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$
b) through the origin, $(1,1,0)$, and $(2,-1,3)$
c) through $(1,0,1),(2,-1,2),(-1,3,2)$
d) through the points on the x, y and z-axes where $x=a, y=b, z=c$ respectively (give the equation in the form $A x+B y+C z=1$ and remember it)
e) through $(1,0,1)$ and $(0,1,1)$ and parallel to $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$

1E-2 Find the dihedral angle between the planes $2 x-y+z=3$ and $x+y+2 z=1$.
1E-3 Find in parametric form the equations for
a) the line through $(1,0,-1)$ and parallel to $2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$
b) the line through $(2,-1,-1)$ and perpendicular to the plane $x-y+2 z=3$
c) all lines passing through $(1,1,1)$ and lying in the plane $x+2 y-z=2$

1E-4 Where does the line through $(0,1,2)$ and $(2,0,3)$ intersect the plane $x+4 y+z=4$?
1E-5 The line passing through $(1,1,-1)$ and perpendicular to the plane $x+2 y-z=3$ intersects the plane $2 x-y+z=1$ at what point?

1E-6 Show that the distance D from the origin to the plane $a x+b y+c z=d$ is given by the formula $D=\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
(Hint: Let \mathbf{n} be the unit normal to the plane. and P be a point on the plane; consider the component of $O P$ in the direction \mathbf{n}.)

1E-7* Formulate a general method for finding the distance between two skew (i.e., nonintersecting) lines in space, and carry it out for two non-intersecting lines lying along the diagonals of two adjacent faces of the unit cube (place it in the first octant, with one vertex at the origin).
(Hint: the shortest line segment joining the two skew lines will be perpendicular to both of them (if it weren't, it could be shortened).)

1F. Matrix Algebra

1F-1* Let $A=\left(\begin{array}{rrr}2 & -1 & 3 \\ 1 & 0 & 4\end{array}\right), \quad B=\left(\begin{array}{rr}1 & -1 \\ 2 & 3 \\ -1 & 2\end{array}\right), \quad C=\left(\begin{array}{rr}0 & 2 \\ -3 & 4 \\ 1 & 1\end{array}\right)$. Compute
a) $B+C, \quad B-C, \quad 2 B-3 C$.
b) $A B, A C, B A, C A, B C^{T}, C B^{T}$
c) $A(B+C), A B+A C ;(B+C) A, B A+C A$

1F-2* Let A be an arbitrary $m \times n$ matrix, and let I_{k} be the identity matrix of size k. Verify that $I_{m} A=A$ and $A I_{n}=A$.

1F-3 Find all 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $A^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
$\mathbf{1 F}-\mathbf{4}^{*}$ Show that matrix multiplication is not in general commutative by calculating for each pair below the matrix $A B-B A$:
a) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$
b) $A=\left(\begin{array}{rrr}2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1\end{array}\right), \quad B=\left(\begin{array}{rrr}3 & 1 & -2 \\ 3 & -2 & 4 \\ -3 & 5 & -1\end{array}\right)$

1F-5 a) Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Compute A^{2}, A^{3}. b) Find A^{2}, A^{3}, A^{n} if $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
1F-6* Let $A, A^{\prime}, B, B^{\prime}$ be 2×2 matrices, and O the 2×2 zero matrix. Express in terms of these five matrices the product of the 4×4 matrices $\left(\begin{array}{cc}A & O \\ O & B\end{array}\right)\left(\begin{array}{cc}A^{\prime} & O \\ O & B^{\prime}\end{array}\right)$.
$\mathbf{1 F - 7}$ * Let $A=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. Show there are no values of a and b such that $A B-B A=I_{2}$.
$\mathbf{1 F - 8}$ a) If $A\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right), \quad A\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right), \quad A\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), \quad$ what is the 3×3 matrix A ?
b)* If $A\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right), \quad A\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ 0 \\ 3\end{array}\right), \quad A\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{l}7 \\ 1 \\ 1\end{array}\right), \quad$ what is $A ?$

1F-9 A square $n \times n$ matrix is called orthogonal if $A \cdot A^{T}=I_{n}$. Show that this condition is equivalent to saying that
a) each row of A is a row vector of length 1 ,
b) two different rows are orthogonal vectors.

1F-10* Suppose A is a 2×2 orthogonal matrix, whose first entry is $a_{11}=\cos \theta$. Fill in the rest of A. (There are four possibilities. Use Exercise 9.)

1F-11* Show that if $A+B$ and $A B$ are defined, then
a) $(A+B)^{T}=A^{T}+B^{T}$,
b) $(A B)^{T}=B^{T} A^{T}$.

1G. Solving Square Systems; Inverse Matrices

For each of the following, solve the equation $A \mathbf{x}=\mathbf{b}$ by finding A^{-1}.
$\mathbf{1 G - 1} \mathbf{1}^{*} \quad A=\left(\begin{array}{ccc}3 & 1 & -1 \\ -1 & 2 & 0 \\ -1 & -1 & -1\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}8 \\ 3 \\ 0\end{array}\right)$.
$\mathbf{1 G - 2}^{*}$ a) $A=\left(\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right), \quad \mathbf{b}=\binom{-1}{1} ;$
$\mathbf{1 G - 3} A=\left(\begin{array}{rrr}1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right) . \quad$ Solve $A \mathbf{x}=\mathbf{b}$ by finding A^{-1}.

1G-4 Referring to Exercise 3 above, solve the system

$$
x_{1}-x_{2}+x_{3}=y_{1}, \quad x_{2}+x_{3}=y_{2} \quad-x_{1}-x_{2}+2 x_{3}=y_{3}
$$

for the x_{i} as functions of the y_{i}.
1G-5 Show that $(A B)^{-1}=B^{-1} A^{-1}$, by using the definition of inverse matrix.

1G-6* Another calculation of the inverse matrix.

If we know A^{-1}, we can solve the system $A \mathbf{x}=\mathbf{y}$ for \mathbf{x} by writing $\mathbf{x}=A^{-1} \mathbf{y}$. But conversely, if we can solve by some other method (elimination, say) for \mathbf{x} in terms of \mathbf{y}, getting $\mathbf{x}=B \mathbf{y}$, then the matrix $B=A^{-1}$, and we will have found A^{-1}.

This is a good method if A is an upper or lower triangular matrix - one with only zeros respectively below or above the main diagonal. To illustrate:
a) Let $A=\left(\begin{array}{rrr}-1 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right) ; \quad$ find A^{-1} by solving $\begin{aligned} &-x_{1}+x_{2}+3 x_{3}=y_{1} \\ & 2 x_{2}-x_{3}=y_{2} \quad \text { for the } x_{i} \\ & x_{3}=y_{3}\end{aligned}$ in terms of the y_{i} (start from the bottom and proceed upwards).
b) Calculate A^{-1} by the method given in the notes.

1G-7* Consider the rotation matrix $A_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ corresponding to rotation of the x and y axes through the angle θ. Calculate A_{θ}^{-1} by the adjoint matrix method, and explain why your answer looks the way it does.

1G-8* a) Show: A is an orthogonal matrix (cf. Exercise 1F-9) if and only if $A^{-1}=A^{T}$.
b) Illustrate with the matrix of exercise 7 above.
c) Use (a) to show that if A and B are $n \times n$ orthogonal matrices, so is $A B$.

1G-9* a) Let A be a 3×3 matrix such that $|A| \neq 0$. The notes construct a right-inverse A^{-1}, that is, a matrix such that $A \cdot A^{-1}=I$. Show that every such matrix A also has a left inverse B (i.e., a matrix such that $B A=I$.)
(Hint: Consider the equation $A^{T}\left(A^{T}\right)^{-1}=I$; cf. Exercise 1F-11.)
b) Deduce that $B=A^{-1}$ by a one-line argument.
(This shows that the right inverse A^{-1} is automatically the left inverse also. So if you want to check that two matrices are inverses, you only have to do the multiplication on one side - the product in the other order will automatically be I also.)

1G-10* Let A and B be two $n \times n$ matrices. Suppose that $B=P^{-1} A P$ for some invertible $n \times n$ matrix P. Show that $B^{n}=P^{-1} A^{n} P$. If $B=I_{n}$, what is A ?

1G-11* Repeat Exercise 6a and 6b above, doing it this time for the general 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, assuming $|A| \neq 0$.

1H. Theorems about Square Systems

1H-1 Use Cramer's rule to solve for x in the following:
$3 x-y+z=1$
(a) $-x+2 y+z=2$,

$$
\begin{align*}
x-y+z & =0 \\
x-z & =1 \tag{b}\\
-x+y+z & =2
\end{align*}
$$

(We did not cover Cramer's rule in this course.)
1H-2 Using Cramer's rule, give another proof that if A is an $n \times n$ matrix whose determinant is non-zero, then the equations $A \mathbf{x}=0$ have only the trivial solution. (We did not cover Cramer's rule in this course.)

$$
x_{1}-x_{2}+x_{3}=0
$$

1H-3 a) For what c-value(s) will

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =0 \quad \text { have a non-trivial solution? } \\
-x_{1}+c x_{2}+2 x_{3} & =0
\end{aligned}
$$

b) For what c-value(s) will $\left(\begin{array}{rr}2 & 1 \\ 0 & -1\end{array}\right)\binom{x}{y}=c\binom{x}{y}$ have a non-trivial solution? (Write it as a system of homogeneous equations.)
c) For each value of c in part (a), find a non-trivial solution to the corresponding system. (Interpret the equations as asking for a vector orthogonal to three given vectors; find it by using the cross product.)
d)* For each value of c in part (b), find a non-trivial solution to the corresponding system.

$$
\begin{array}{r}
x-2 y+z=0 \\
x+y-z=0 \\
3 x-3 x+z=0
\end{array} ;
$$

use the method suggested in Exercise 3c above.
1H-5 Suppose that for the system $\begin{aligned} & a_{1} x+b_{1} y=c_{1} \\ & a_{2} x+b_{2} y=c_{2}\end{aligned}$ we have $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=0$. Assume that $a_{1} \neq 0$. Show that the system is consistent (i.e., has solutions) if and only if $c_{2}=\frac{a_{2}}{a_{1}} c_{1}$.

1H-6* Suppose $|A|=0$, and that \mathbf{x}_{1} is a particular solution of the system $A \mathbf{x}=B$. Show that any other solution \mathbf{x}_{2} of this system can be written as $\mathbf{x}_{2}=\mathbf{x}_{1}+\mathbf{x}_{0}$, where \mathbf{x}_{0} is a solution of the system $A \mathbf{x}=\mathbf{0}$.

1H-7 Suppose we want to find a pure oscillation (sine wave) of frequency 1 passing through two given points. In other words, we want to choose constants a and b so that the function

$$
f(x)=a \cos x+b \sin x
$$

has prescribed values at two given x-values: $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$.
a) Show this is possible in one and only one way, if we assume that $x_{2} \neq x_{1}+n \pi$, for every integer n.
b) If $x_{2}=x_{1}+n \pi$ for some integer n, when can a and b be found?

1H-8* The method of partial fractions, if you do it by undetermined coefficients, leads to a system of linear equations. Consider the simplest case:

$$
\frac{a x+b}{\left(x-r_{1}\right)\left(x-r_{2}\right)}=\frac{c}{x-r_{1}}+\frac{d}{x-r_{2}}, \quad\left(a, b, r_{1}, r_{2} \text { given; } c, d \text { to be found }\right) ;
$$

what are the linear equations which determine the constants c and d ? Under what circumstances do they have a unique solution?
(If you are ambitious, try doing this also for three roots $r_{i}, i=1,2,3$. Evaluate the determinant by using column operations to get zeros in the top row.)

1I. Vector Functions and Parametric Equations

1I-1 The point P moves with constant speed v in the direction of the constant vector $a \mathbf{i}+b \mathbf{j}$. If at time $t=0$ it is at $\left(x_{0}, y_{0}\right)$, what is its position vector function $\mathbf{r}(t)$?

1I-2 A point moves clockwise with constant angular velocity ω on the circle of radius a centered at the origin. What is its position vector function $\mathbf{r}(t)$, if at time $t=0$ it is at
(a) $(a, 0)$
(b) $(0, a)$

1I-3 Describe the motions given by each of the following position vector functions, as t goes from $-\infty$ to ∞. In each case, give the $x y$-equation of the curve along which P travels, and tell what part of the curve is actually traced out by P.
a) $\mathbf{r}=2 \cos ^{2} t \mathbf{i}+\sin ^{2} t \mathbf{j}$
b) $\mathbf{r}=\cos 2 t \mathbf{i}+\cos t \mathbf{j}$
c) $\mathbf{r}=\left(t^{2}+1\right) \mathbf{i}+t^{3} \mathbf{j}$
d) $\mathbf{r}=\tan t \mathbf{i}+\sec t \mathbf{j}$

1I-4 A roll of plastic tape of outer radius a is held in a fixed position while the tape is being unwound counterclockwise. The end P of the unwound tape is always held so the unwound portion is perpendicular to the roll. Taking the center of the roll to be the origin O, and the end P to be initially at $(a, 0)$, write parametric equations for the motion of P.
(Use vectors; express the position vector $O P$ as a vector function of one variable.)
1I-5 A string is wound clockwise around the circle of radius a centered at the origin O; the initial position of the end P of the string is $(a, 0)$. Unwind the string, always pulling it taut (so it stays tangent to the circle). Write parametric equations for the motion of P.
(Use vectors; express the position vector $O P$ as a vector function of one variable.)
1I-6 A bow-and-arrow hunter walks toward the origin along the positive x-axis, with unit speed; at time 0 he is at $x=10$. His arrow (of unit length) is aimed always toward a rabbit hopping with constant velocity $\sqrt{5}$ in the first quadrant along the line $y=2 x$; at time 0 it is at the origin.
a) Write down the vector function $\mathbf{A}(t)$ for the arrow at time t.
b) The hunter shoots (and misses) when closest to the rabbit; when is that?

1I-7 The cycloid is the curve traced out by a fixed point P on a circle of radius a which rolls along the x-axis in the positive direction, starting when P is at the origin O. Find the vector function $O P$; use as variable the angle θ through which the circle has rolled.
(Hint: begin by expressing $O P$ as the sum of three simpler vector functions.)

1J. Differentiation of Vector Functions

1J-1 1. For each of the following vector functions of time, calculate the velocity, speed $|d s / d t|$, unit tangent vector (in the direction of velocity), and acceleration.
a) $e^{t} \mathbf{i}+e^{-t} \mathbf{j}$
b) $t^{2} \mathbf{i}+t^{3} \mathbf{j}$
c) $\left(1-2 t^{2}\right) \mathbf{i}+t^{2} \mathbf{j}+\left(-2+2 t^{2}\right) \mathbf{k}$
$\mathbf{1 J - 2}$ Let $O P=\frac{1}{1+t^{2}} \mathbf{i}+\frac{t}{1+t^{2}} \mathbf{j}$ be the position vector for a motion.
a) Calculate $\mathbf{v},|d s / d t|$, and \mathbf{T}.
b) At what point in the speed greatest? smallest?
c) Find the $x y$-equation of the curve along which the point P is moving, and describe it geometrically.

1J-3 Prove the rule for differentiating the scalar product of two plane vector functions:

$$
\frac{d}{d t} \mathbf{r} \cdot \mathbf{s}=\frac{d \mathbf{r}}{d t} \cdot \mathbf{s}+\mathbf{r} \cdot \frac{d \mathbf{s}}{d t}
$$

by calculating with components, letting $\mathbf{r}=x_{1} \mathbf{i}+y_{1} \mathbf{j}$ and $\mathbf{s}=x_{2} \mathbf{i}+y_{2} \mathbf{j}$.
$\mathbf{1 J} \mathbf{- 4}$ Suppose a point P moves on the surface of a sphere with center at the origin; let

$$
O P=\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

Show that the velocity vector \mathbf{v} is always perpendicular to \mathbf{r} two different ways:
a) using the x, y, z-coordinates
b) without coordinates (use the formula in $\mathbf{1 J} \mathbf{- 3}$, which is valid also in space).
c) Prove the converse: if \mathbf{r} and \mathbf{v} are perpendicular, then the motion of P is on the surface of a sphere centered at the origin.

1J-5 a) Suppose a point moves with constant speed. Show that its velocity vector and acceleration vector are perpendicular. (Use the formula in 1J-3.)
b) Show the converse: if the velocity and acceleration vectors are perpendicular, the point P moves with constant speed.

1J-6 For the helical motion $r(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+b t \mathbf{k}$,
a) calculate $\mathbf{v}, \mathbf{a}, \mathbf{T},|d s / d t|$
b) show that \mathbf{v} and \mathbf{a} are perpendicular; explain using $\mathbf{1 J - 5}$
$\mathbf{1 J - 7}$ a) Suppose you have a differentiable vector function $\mathbf{r}(t)$. How can you tell if the parameter t is the arclength s (measured from some point in the direction of increasing t) without actually having to calculate s explicitly?
b) How should a be chosen so that t is the arclength if $\mathbf{r}(t)=\left(x_{0}+a t\right) \mathbf{i}+\left(y_{0}+a t\right) \mathbf{j}$?
c) How should a and b be chosen so that t is the arclength in the helical motion described in Exercise 1J-6?
$1 \mathbf{J}-8$ a) Prove the formula $\frac{d}{d t} u(t) \mathbf{r}(t)=\frac{d u}{d t} \mathbf{r}(t)+u(t) \frac{d \mathbf{r}}{d t}$.
(You may assume the vectors are in the plane; calculate with the components.)
b) Let $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}$, the exponential spiral. Use part (a) to find the speed of this motion.

1J-9 A point P is moving in space, with position vector

$$
\mathbf{r}=O P=3 \cos t \mathbf{i}+5 \sin t \mathbf{j}+4 \cos t \mathbf{k}
$$

a) Show it moves on the surface of a sphere.
b) Show its speed is constant.
c) Show the acceleration is directed toward the origin.
d) Show it moves in a plane through the origin.
e) Describe the path of the point.
$\mathbf{1 J - 1 0}$ The positive curvature κ of the vector function $\mathbf{r}(t)$ is defined by $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|$.
a) Show that the helix of $\mathbf{1 J - 6}$ has constant curvature. (It is not necessary to calculate s explicitly; calculate $d \mathbf{T} / d t$ instead and relate it to κ by using the chain rule.)
b) What is this curvature if the helix is reduced to a circle in the $x y$-plane?

1K. Kepler's Second Law

1K-1 (Same as 1J-3). Prove the product rule for differentiating the dot product of two plane vectors: do the calculation using an $\mathbf{i} \mathbf{j}$-coordinate system.
$\left(\right.$ Let $\mathbf{r}(t)=x_{1}(t) \mathbf{i}+y_{1}(t) \mathbf{j}$ and $\left.\mathbf{s}(t)=x_{2}(t) \mathbf{i}+y_{2}(t) \mathbf{j}.\right)$
1K-2 Let $\mathbf{s}(t)$ be a vector function. Prove by using components that

$$
\frac{d \mathbf{s}}{d t}=\mathbf{0} \Rightarrow \mathbf{s}(t)=\mathbf{K}, \quad \text { where } \mathbf{K} \text { is a constant vector. }
$$

1K-3 In our proof that Kepler's second law is equivalent to the force being central, used the following steps to show the second law implies a central force. Kepler's second law says the motion is in a plane and

$$
\begin{equation*}
2 \frac{d A}{d t}=|\mathbf{r} \times \mathbf{v}| \text { is constant } \tag{2}
\end{equation*}
$$

This implies $\mathbf{r} \times \mathbf{v}$ is constant. So,

$$
0=\frac{d}{d t}(\mathbf{r} \times \mathbf{v})=\mathbf{v} \times \mathbf{v}+\mathbf{r} \times \mathbf{a}=\mathbf{r} \times \mathbf{a}
$$

This implies a and \mathbf{r} are parallel, i.e. the force is central.
Reverse these steps to prove the converse: for motion under any type of central force, the path of motion will lie in a plane and area will be swept out by the radius vector at a constant rate. You will need the statement in exercise 1K-2.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

