Extended Stokes' Theorem

Let $\mathbf{F}=\left\langle 2 x z+2 y, 2 y z+2 y x, x^{2}+y^{2}+z^{2}\right\rangle$. Take C_{1} and C_{2} two curves going around the circular cylinder of radius a as shown. Show $\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$.
Answer: We easily compute $\operatorname{curl} \mathbf{F}=(2 y-2 x) \mathbf{k} \Rightarrow \operatorname{curl} \mathbf{F} \cdot \mathbf{n}=0$, where \mathbf{n} is the normal to the cylinder. Let S be the part of the cylinder between C_{1} and C_{2} then Stokes' theorem says

$$
\oint_{C_{1}-C_{2}} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=0 . \Rightarrow \oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r} . \quad \mathrm{QED}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

