## Equation of a Plane

**1**. Later we will return to the topic of planes in more detail. Here we will content ourself with one example.

Find the equation of the plane containing the three points  $P_1 = (1,3,1)$ ,  $P_2 = (1,2,2)$ ,  $P_3 = (2,3,3)$ .

## Answer:

The vectors  $\overrightarrow{P_1P_2}$  and  $\overrightarrow{P_1P_3}$  are in the plane, so

$$\mathbf{N} = \overrightarrow{\mathbf{P_1P_2}} \times \overrightarrow{\mathbf{P_1P_3}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{vmatrix} = \mathbf{i}(-2) - \mathbf{j}(-1) + \mathbf{k}(1) = \langle -2, 1, 1 \rangle.$$

is orthogonal to the plane.

Now for any point P = (x, y, z) in the plane, the vector  $\overrightarrow{\mathbf{P_1P}}$  is also in the plane and is therefore orthogonal to **N**. Expressing this with the dot product we get



The equation of the plane is -2x + y + z = 2. You should check that the three points  $P_1$ ,  $P_2$ ,  $P_3$  do, in fact, satisfy this equation.

The standard terminology for the vector  $\mathbf{N}$  is to call it a *normal* to the plane.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.