Uses of dot product

1. Find the angle between $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}-\mathbf{j}+\mathbf{k}$.

Answer: We call the angle θ and use both ways of computing the dot product.
Algebraically we have

$$
(\mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(2 \mathbf{i}-\mathbf{j}+\mathbf{k})=2-1+2=3 .
$$

Geometrically

$$
(\mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(2 \mathbf{i}-\mathbf{j}+\mathbf{k})=|\mathbf{i}+\mathbf{j}+2 \mathbf{k}| \cdot|2 \mathbf{i}-\mathbf{j}+\mathbf{k}| \cos \theta=\sqrt{6} \sqrt{6} \cos \theta
$$

Combining these two we have

$$
6 \cos \theta=3 \Rightarrow \cos \theta=\frac{3}{6}=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3} .
$$

2. a) Are $\langle 1,3\rangle$ and $\langle-2,2\rangle$ orthogonal?
b) For what value of a are the vectors $\langle 1, a\rangle$ and $\langle 2,3\rangle$ at right angles?
c) In the figure the vectors \mathbf{A} and \mathbf{B}_{1} are orthogonal as are \mathbf{A} and \mathbf{B}_{2}. If all the vectors are the same length what are the coordinates of \mathbf{B}_{1} and \mathbf{B}_{2} ?

Answer: a) Vectors are orthogonal if their dot product is 0 . So, taking the dot product

$$
\langle 1,3\rangle \cdot\langle-2,2\rangle=-2+6=4 \neq 0
$$

Thus the vectors are not orthogonal.
b) Setting the dot product to 0 and solving for a we get

$$
\langle 1, a\rangle \cdot\langle 2,3\rangle=2+3 a=0 \Rightarrow a=-2 / 3 .
$$

c) \mathbf{B}_{1} is \mathbf{A} rotated 90° clockwise. We will show that $\mathbf{B}_{1}=\left\langle a_{2},-a_{1}\right\rangle$. It is easy to check that $\left|\left\langle a_{2},-a_{1}\right\rangle\right|=|\mathbf{A}|$ and $\left\langle a_{2},-a_{1}\right\rangle \cdot \mathbf{A}=0$. The figure above shows that putting the negative sign on the a_{1} means $\left\langle a_{2},-a_{1}\right\rangle$ is turned clockwise from \mathbf{A}. Thus, $\left\langle a_{2},-a_{1}\right\rangle=\mathbf{B}_{1}$.
\mathbf{B}_{2} is \mathbf{A} rotated 90° counterclockwise. Similarly to \mathbf{B}_{1}, we find $\mathbf{B}_{2}=\left\langle-a_{2}, a_{1}\right\rangle$.
3. Using vectors and dot product show the diagonals of a parallelogram have equal lengths if and only if it's a rectangle

Answer:

We will make use of two properties of the dot product

1. $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}$.
$2 . \mathbf{v} \cdot \mathbf{w}=0 \Leftrightarrow \mathbf{v} \perp \mathbf{w}$.
Referring to the figure, we will also need to use the fact that $A B C D$ is a parallelogram.
That is, $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{D C}}$.
We have $\overrightarrow{\mathbf{A C}}=\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}$ and $\overrightarrow{\mathbf{B D}}=\overrightarrow{\mathbf{B C}}+\overrightarrow{\mathbf{C D}}=\overrightarrow{\mathbf{B C}}-\overrightarrow{\mathbf{A B}}$.
Taking dot products:

$$
|\overrightarrow{\mathbf{A C}}|^{2}=\overrightarrow{\mathbf{A C}} \cdot \overrightarrow{\mathbf{A C}}=(\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}) \cdot(\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}})=|\overrightarrow{\mathbf{A B}}|^{2}+2 \overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{B C}}+|\overrightarrow{\mathbf{B C}}|^{2} .
$$

and

$$
|\overrightarrow{\mathbf{B D}}|^{2}=\overrightarrow{\mathbf{B D}} \cdot \overrightarrow{\mathbf{B D}}+(\overrightarrow{\mathbf{B C}}-\overrightarrow{\mathbf{A B}}) \cdot(\overrightarrow{\mathbf{B C}}-\overrightarrow{\mathbf{A B}})=|\overrightarrow{\mathbf{B C}}|^{2}-2 \overrightarrow{\mathbf{B C}} \cdot \overrightarrow{\mathbf{A B}}+|\overrightarrow{\mathbf{A B}}|^{2}
$$

Comparing the two equations above we see

$$
|\overrightarrow{\mathbf{A C}}|^{2}=|\overrightarrow{\mathbf{B D}}|^{2} \Leftrightarrow 4 \overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{B C}}=0
$$

This shows the diagonals have the same length if and only if $\overrightarrow{\mathbf{A B}} \perp \overrightarrow{\mathbf{B C}}$. That is, if and only if the sides of the parallelogram are orthogonal to each other. QED

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

