Uses of dot product

1. Find the angle between $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} - \mathbf{j} + \mathbf{k}$.

<u>Answer:</u> We call the angle θ and use both ways of computing the dot product. Algebraically we have

$$(i + j + 2k) \cdot (2i - j + k) = 2 - 1 + 2 = 3.$$

Geometrically

$$(\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = |\mathbf{i} + \mathbf{j} + 2\mathbf{k}| \cdot |2\mathbf{i} - \mathbf{j} + \mathbf{k}| \cos \theta = \sqrt{6}\sqrt{6} \cos \theta.$$

Combining these two we have

$$6\cos\theta = 3 \Rightarrow \cos\theta = \frac{3}{6} = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}.$$

2. a) Are $\langle 1, 3 \rangle$ and $\langle -2, 2 \rangle$ orthogonal?

b) For what value of a are the vectors $\langle 1, a \rangle$ and $\langle 2, 3 \rangle$ at right angles?

c) In the figure the vectors \mathbf{A} and \mathbf{B}_1 are orthogonal as are \mathbf{A} and \mathbf{B}_2 . If all the vectors are the same length what are the coordinates of \mathbf{B}_1 and \mathbf{B}_2 ?

Answer: a) Vectors are orthogonal if their dot product is 0. So, taking the dot product

$$\langle 1, 3 \rangle \cdot \langle -2, 2 \rangle = -2 + 6 = 4 \neq 0.$$

Thus the vectors are not orthogonal.

b) Setting the dot product to 0 and solving for a we get

$$\langle 1, a \rangle \cdot \langle 2, 3 \rangle = 2 + 3a = 0 \Rightarrow a = -2/3.$$

c) \mathbf{B}_1 is \mathbf{A} rotated 90° clockwise. We will show that $\mathbf{B}_1 = \langle a_2, -a_1 \rangle$. It is easy to check that $|\langle a_2, -a_1 \rangle| = |\mathbf{A}|$ and $\langle a_2, -a_1 \rangle \cdot \mathbf{A} = 0$. The figure above shows that putting the negative sign on the a_1 means $\langle a_2, -a_1 \rangle$ is turned clockwise from \mathbf{A} . Thus, $\langle a_2, -a_1 \rangle = \mathbf{B}_1$.

 \mathbf{B}_2 is **A** rotated 90° counterclockwise. Similarly to \mathbf{B}_1 , we find $\mathbf{B}_2 = \langle -a_2, a_1 \rangle$.

3. Using vectors and dot product show the diagonals of a parallelogram have equal lengths if and only if it's a rectangle

Answer:

We will make use of two properties of the dot product

1. $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$.

2. $\mathbf{v} \cdot \mathbf{w} = 0 \iff \mathbf{v} \perp \mathbf{w}.$

Referring to the figure, we will also need to use the fact that ABCD is a parallelogram. That is, $\overrightarrow{AB} = \overrightarrow{DC}$.

We have $\overrightarrow{\mathbf{AC}} = \overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{BC}}$ and $\overrightarrow{\mathbf{BD}} = \overrightarrow{\mathbf{BC}} + \overrightarrow{\mathbf{CD}} = \overrightarrow{\mathbf{BC}} - \overrightarrow{\mathbf{AB}}$.

Taking dot products:

$$|\overrightarrow{\mathbf{AC}}|^2 = \overrightarrow{\mathbf{AC}} \cdot \overrightarrow{\mathbf{AC}} = (\overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{BC}}) \cdot (\overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{BC}}) = |\overrightarrow{\mathbf{AB}}|^2 + 2\overrightarrow{\mathbf{AB}} \cdot \overrightarrow{\mathbf{BC}} + |\overrightarrow{\mathbf{BC}}|^2.$$

and

$$\overrightarrow{\mathbf{BD}}|^2 = \overrightarrow{\mathbf{BD}} \cdot \overrightarrow{\mathbf{BD}} + (\overrightarrow{\mathbf{BC}} - \overrightarrow{\mathbf{AB}}) \cdot (\overrightarrow{\mathbf{BC}} - \overrightarrow{\mathbf{AB}}) = |\overrightarrow{\mathbf{BC}}|^2 - 2\overrightarrow{\mathbf{BC}} \cdot \overrightarrow{\mathbf{AB}} + |\overrightarrow{\mathbf{AB}}|^2$$

Comparing the two equations above we see

$$|\overrightarrow{\mathbf{AC}}|^2 = |\overrightarrow{\mathbf{BD}}|^2 \Leftrightarrow 4\overrightarrow{\mathbf{AB}} \cdot \overrightarrow{\mathbf{BC}} = 0.$$

This shows the diagonals have the same length if and only if $\overrightarrow{AB} \perp \overrightarrow{BC}$. That is, if and only if the sides of the parallelogram are orthogonal to each other. QED

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.