Problems: Work and Line Integrals

1. Evaluate $I=\int_{C} y d x+(x+2 y) d y$ where C is the curve shown.

Figure 1: Curve C is C_{1} followed by C_{2}.
Answer: The curve C is made up of two pieces, so

$$
I=\int_{C_{1}} y d x+(x+2 y) d y+\int_{C_{2}} y d x+(x+2 y) d y .
$$

Note that we don't always need to introduce the variable t.
$C_{1}: y=1$, use x as parameter. $0 \leq x \leq 1 \Rightarrow d x=d x, d y=0$.
$\Rightarrow \int_{C_{1}} y d x+(2+2 y) d y=\int_{0}^{1} d x=1$.
$C_{2}: \quad x=1$, use y as parameter. y goes from 1 to 0 .
$\Rightarrow \int_{C_{2}} y d x+(2+2 y) d y=\int_{1}^{0}(1+2 y) d y=-\int_{0}^{1} 1+2 y d y=-2$.
So $I=1-2=-1$.
2. Let $\mathbf{F}=-x \mathbf{i}-y \mathbf{j}$. Sketch this vector field and describe it in words.

Answer:

Each arrow starts at (x, y) and ends at the origin. The further a vector in this field is from $(0,0)$, the longer it is.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

