Changing Variables in Multiple Integrals

1. Changing variables.

Double integrals in x, y coordinates which are taken over circular regions, or have integrands involving the combination $x^{2}+y^{2}$, are often better done in polar coordinates:

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\iint_{R} g(r, \theta) r d r d \theta \tag{1}
\end{equation*}
$$

This involves introducing the new variables r and θ, together with the equations relating them to x, y in both the forward and backward directions:

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1}(y / x) ; \quad x=r \cos \theta, \quad y=r \sin \theta \tag{2}
\end{equation*}
$$

Changing the integral to polar coordinates then requires three steps:
A. Changing the integrand $f(x, y)$ to $g(r, \theta)$, by using (2);
B. Supplying the area element in the r, θ system: $d A=r d r d \theta$;
C. Using the region R to determine the limits of integration in the r, θ system.

In the same way, double integrals involving other types of regions or integrands can sometimes be simplified by changing the coordinate system from x, y to one better adapted to the region or integrand. Let's call the new coordinates u and v; then there will be equations introducing the new coordinates, going in both directions:

$$
\begin{equation*}
u=u(x, y), \quad v=v(x, y) ; \quad x=x(u, v), \quad y=y(u, v) \tag{3}
\end{equation*}
$$

(often one will only get or use the equations in one of these directions). To change the integral to u, v-coordinates, we then have to carry out the three steps $\mathbf{A}, \mathbf{B}, \mathbf{C}$ above. A first step is to picture the new coordinate system; for this we use the same idea as for polar coordinates, namely, we consider the grid formed by the level curves of the new coordinate functions:

$$
\begin{equation*}
u(x, y)=u_{0}, \quad v(x, y)=v_{0} \tag{4}
\end{equation*}
$$

Once we have this, algebraic and geometric intuition will usually handle steps \mathbf{A} and \mathbf{C}, but for \mathbf{B} we will need a formula: it uses a determinant called the Jacobian, whose notation and definition are

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \tag{5}\\
y_{u} & y_{v}
\end{array}\right|
$$

Using it, the formula for the area element in the u, v-system is

$$
\begin{equation*}
d A=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{6}
\end{equation*}
$$

so the change of variable formula is

$$
\begin{equation*}
\iint_{R} f(x, y) d x d y=\iint_{R} g(u, v)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{7}
\end{equation*}
$$

where $g(u, v)$ is obtained from $f(x, y)$ by substitution, using the equations (3).
We will derive the formula (5) for the new area element in the next section; for now let's check that it works for polar coordinates.

Example 1. Verify (1) using the general formulas (5) and (6).
Solution. Using (2), we calculate:

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
$$

so that $d A=r d r d \theta$, according to (5) and (6); note that we can omit the absolute value, since by convention, in integration problems we always assume $r \geq 0$, as is implied already by the equations (2).

We now work an example illustrating why the general formula is needed and how it is used; it illustrates step \mathbf{C} also - putting in the new limits of integration.

Example 2. Evaluate $\iint_{R}\left(\frac{x-y}{x+y+2}\right)^{2} d x d y$ over the region R pictured.
Solution. This would be a painful integral to work out in rectangular coordinates. But the region is bounded by the lines

$$
\begin{equation*}
x+y= \pm 1, \quad x-y= \pm 1 \tag{8}
\end{equation*}
$$

and the integrand also contains the combinations $x-y$ and $x+y$. These powerfully suggest that the integral will be simplified by the change of variable (we give it also in the inverse direction, by solving the first pair of equations for x and y):

$$
\begin{equation*}
u=x+y, \quad v=x-y ; \quad x=\frac{u+v}{2}, \quad y=\frac{u-v}{2} \tag{9}
\end{equation*}
$$

We will also need the new area element; using (5) and (9) above. we get

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
1 / 2 & 1 / 2 \tag{10}\\
1 / 2 & -1 / 2
\end{array}\right|=-\frac{1}{2}
$$

note that it is the second pair of equations in (9) that were used, not the ones introducing u and v. Thus the new area element is (this time we do need the absolute value sign in (6))

$$
\begin{equation*}
d A=\frac{1}{2} d u d v \tag{11}
\end{equation*}
$$

We now combine steps \mathbf{A} and \mathbf{B} to get the new double integral; substituting into the integrand by using the first pair of equations in (9), we get

$$
\begin{equation*}
\iint_{R}\left(\frac{x-y}{x+y+2}\right)^{2} d x d y=\iint_{R}\left(\frac{v}{u+2}\right)^{2} \frac{1}{2} d u d v \tag{12}
\end{equation*}
$$

In $u v$-coordinates, the boundaries (8) of the region are simply $u= \pm 1, v= \pm 1$, so the integral (12) becomes

$$
\iint_{R}\left(\frac{v}{u+2}\right)^{2} \frac{1}{2} d u d v=\int_{-1}^{1} \int_{-1}^{1}\left(\frac{v}{u+2}\right)^{2} \frac{1}{2} d u d v
$$

We have

$$
\text { inner integral } \left.\left.=-\frac{v^{2}}{2(u+2)}\right]_{u=-1}^{u=1}=\frac{v^{2}}{3} ; \quad \text { outer integral }=\frac{v^{3}}{9}\right]_{-1}^{1}=\frac{2}{9}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

