Equations of planes

We have touched on equations of planes previously. Here we will fill in some of the details.

Planes in point-normal form

The basic data which determines a plane is a point P_{0} in the plane and a vector \mathbf{N} orthogonal to the plane. We call \mathbf{N} a normal to the plane and we will sometimes say \mathbf{N} is normal to the plane, instead of orthogonal.
Now, suppose we want the equation of a plane and we have a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a vector $\overrightarrow{\mathbf{N}}=\langle a, b, c\rangle$ normal to the plane.
Let $P=(x, y, z)$ be an arbitrary point in the plane. Then the vector $\overrightarrow{\mathbf{P}_{\mathbf{0}} \mathbf{P}}$ is in the plane and therefore orthogonal to \mathbf{N}. This means

$$
\begin{array}{ll}
& \mathbf{N} \cdot \overrightarrow{\mathbf{P}_{\mathbf{0}} \mathbf{P}}=0 \\
\Leftrightarrow & \langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \\
\Leftrightarrow & a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
\end{array}
$$

We call this last equation the point-normal form for the plane.

Example 1: Find the plane through the point $(1,4,9)$ with normal $\langle 2,3,4\rangle$.
Answer: Point-normal form of the plane is $2(x-1)+3(y-4)+4(z-9)=0$. We can also write this as $2 x+3 y+4 z=50$.

Example 2: Find the plane containing the points $P_{1}=(1,2,3), P_{2}=(0,0,3), P_{3}=$ $(2,5,5)$.
Answer: The goal is to find the basic data, i.e. a point in the plane and a normal to the plane. The point is easy, we already have three of them. To get the normal we note (see figure below) that $\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}}$ and $\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}}$ are vectors in the plane, so their cross product is orthogonal (normal) to the plane. That is,

$$
\mathbf{N}=\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}} \times \overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}}=\left(\begin{array}{rrc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & -2 & 0 \\
1 & 3 & 2
\end{array}\right)=-4 \mathbf{i}-\mathbf{j}(-2)+\mathbf{k}(-1)=\langle-4,2,-1\rangle .
$$

Using point-normal form (with point P_{1}) the equation of the plane is

$$
-4(x-1)+2(y-2)-(z-3)=0, \text { or equivalently }-4 x+2 y-z=-3 .
$$

Example 3: Find the plane with normal $\mathbf{N}=\widehat{\mathbf{k}}$ containing the point $(0,0,3)$
Eq. of plane: $\langle 0,0,1\rangle \cdot\langle x, y, z-3\rangle=0 \Leftrightarrow z=3$.

Example 4: Find the plane with x, y and z intercepts a, b and c.
Answer: We could find this using the method example 1. Instead, we'll use a shortcut that works when all the intercepts are known. In this case, the intercepts are

$$
(a, 0,0), \quad(0, b, 0), \quad(0,0, c)
$$

and we simply write the plane as

$$
x / a+y / b+z / c=1 .
$$

You can easily check that each of the given points is on the plane.
For completeness we'll do this using the more general method of example 1.
The 3 points give us 2 vectors in the plane, $\langle-a, b, 0\rangle$ and $\langle-a, 0, c\rangle$.

$\Rightarrow \mathbf{N}=\langle-a, b, 0\rangle \times\langle-a, 0, c\rangle=\langle b c, a c, a b\rangle$.
Point-normal form: $b c(x-a)+a c(y-0)+a b(z-0)=0$
$\Leftrightarrow b c x+a c y+a b z=a b c \Leftrightarrow x / a+y / b+z / c=1$.

Lines in the plane

While we're at it, let's look at two ways to write the equation of a line in the $x y$-plane.
Slope-intercept form: Given the slope m and the y-intercept b the equation of a line can be written $y=m x+b$.

Point-normal form:
We can also use point-normal form to find the equation of a line.
Given a point $\left(x_{0}, y_{0}\right)$ on the line and a vector $\langle a, b\rangle$ normal to the line the equation of the line can be written $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus
 Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

