Dot Product

The dot product is one way of combining ("multiplying") two vectors. The output is a scalar (a number). It is called the dot product because the symbol used is a dot. Because the dot product results in a scalar it, is also called the scalar product.

As with most things in 18.02, we have a geometric and algebraic view of dot product.
Algebraic definition (for 2D vectors):
If $\mathbf{A}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{B}=\left\langle b_{1}, b_{2}\right\rangle$ then

$$
\mathbf{A} \cdot \mathbf{B}=a_{1} b_{1}+a_{2} b_{2} .
$$

Example: $\langle 6,5\rangle \cdot\langle 1,2\rangle=6 \cdot 1+5 \cdot 2=16$.
Geometric view:
The figure below shows \mathbf{A}, \mathbf{B} with the angle θ between them. We get

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A} \| \mathbf{B}| \cos \theta
$$

Showing the two views (algebraic and geometric) are the same requires the law of cosines

$$
\begin{aligned}
& \quad|\mathbf{A}-\mathbf{B}|^{2}=|\mathbf{A}|^{2}+|\mathbf{B}|^{2}-2|\mathbf{A}||\mathbf{B}| \cos \theta \\
& \Rightarrow\left(a_{1}^{2}+a_{2}^{2}\right)+\left(b_{1}^{2}+b_{2}^{2}\right)-\left(\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}\right)=2|\mathbf{A}||\mathbf{B}| \cos \theta \\
& \Rightarrow a_{1} b_{1}+a_{2} b_{2}=|\mathbf{A}||\mathbf{B}| \cos \theta .
\end{aligned}
$$

Since $\left\langle a_{1}, a_{2}\right\rangle \cdot\left\langle b_{1}, b_{2}\right\rangle=a_{1} b_{1}+a_{2} b_{2}$, we have shown $\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta$.
From the algebraic definition of dot product we easily get the the following algebraic law

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}
$$

Example: Find the dot product of \mathbf{A} and \mathbf{B}.
i) $|\mathbf{A}|=2,|\mathbf{B}|=5, \theta=\pi / 4$.

Answer: (draw the picture yourself) $\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta=10 \sqrt{2} / 2=5 \sqrt{2}$.
ii) $\mathbf{A}=\mathbf{i}+2 \mathbf{j}, \mathbf{B}=3 \mathbf{i}+4 \mathbf{j}$.

Answer: $\mathbf{A} \cdot \mathbf{B}=1 \cdot 3+2 \cdot 4=11$.

Three dimensional vectors

The dot product works the same in 3 D as in 2 D . If $\mathbf{A}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{B}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ then

$$
\mathbf{A} \cdot \mathbf{B}=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+a_{3} \cdot b_{3} .
$$

The geometric view is identical and the same proof shows

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta
$$

Example:

Show $A=(4,3,6), B=(-2,0,8), C=(1,5,0)$ are the vertices of a right triangle.
Answer: Two legs of the triangle are $\overrightarrow{\mathbf{A C}}=\langle-3,2,-6\rangle$ and $\overrightarrow{\mathbf{A B}}=\langle-6,-3,2\rangle \Rightarrow$ $\overrightarrow{\mathbf{A C}} \cdot \overrightarrow{\mathbf{A B}}=18-6-12=0$. The geometric view of dot product implies the angle between the legs is $\pi / 2$ (i.e $\cos \theta=0$).

Definition of the term orthogonal and the test for orthogonality

When two vectors are perpendicular to each other we say they are orthogonal.
As seen in the example, since $\cos (\pi / 2)=0$, the dot product gives a test for orthogonality between vectors:

$$
\mathbf{A} \perp \mathbf{B} \Leftrightarrow \mathbf{A} \cdot \mathbf{B}=0 .
$$

Dot product and length

Both the algebraic and geometric formulas for dot product show it is intimately connected to length. In fact, they show for a vector A

$$
\mathbf{A} \cdot \mathbf{A}=|\mathbf{A}|^{2} .
$$

Let's show this using both views.
Algebraically: suppose $\mathbf{A}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ then

$$
\mathbf{A} \cdot \mathbf{A}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cdot\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=|\mathbf{A}|^{2} .
$$

Geometrically: the angle θ between \mathbf{A} and itself is 0 . Therefore,

$$
\mathbf{A} \cdot \mathbf{A}=\left|\mathbf { A } \left\|\mathbf { A } \left|\cos \theta=|\mathbf{A} \| \mathbf{A}|=|\mathbf{A}|^{2}\right.\right.\right.
$$

As promised both views give the formula.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

