Changing the order of integration

1. Evaluate

$$
I=\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin y}{y} d y d x
$$

by changing the order of integration.

Answer:

The given limits are (inner) y from x to $\pi / 2$; (outer) x from 0 to $\pi / 2$.
We use these to sketch the region of integration.

The given limits have inner variable y. To reverse the order of integration we use horizontal stripes. The limits in this order are
(inner) x from 0 to y; (outer) y from 0 to $\pi / 2$.
So the integral becomes

$$
I=\int_{0}^{\pi / 2} \int_{0}^{y} \frac{\sin y}{y} d x d y
$$

We compute the inner, then the outer integrals.
Inner: $\left.\frac{\sin y}{y} x\right|_{0} ^{y}=\sin y . \quad$ Outer: $-\left.\cos y\right|_{0} ^{\pi / 2}=1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

