Problems: Extended Stokes' Theorem

Let $\mathbf{F}=\left\langle 2 x z+y, 2 y z+3 x, x^{2}+y^{2}+5\right\rangle$. Use Stokes' theorem to compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the curve shown on the surface of the circular cylinder of radius 1 .

Figure 1: Positively oriented curve around a cylinder.
Answer: This is very similar to an earlier example; we can use Stokes' theorem to calculate this integral even though we don't have an exact description of C. We just make C into part of the boundary of a surface, as shown in the figure below.

Figure 2: Curves C and C_{1} bound part of a cylinder.
Let C_{1} be the unit circle in the $x y$-plane oriented to match C and S the portion of the cylinder between C and C_{1}. Then Stokes' theorem says:

$$
\begin{gathered}
\oint_{C_{1}-C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S \\
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x z+y & 2 y z+3 x & x^{2}+y^{2}+5
\end{array}\right|=2 \mathbf{k} .
\end{gathered}
$$

Since the normal vector to S is always orthogonal to $\mathbf{k}, \iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n}=0$.
Thus, $\oint_{C_{1}-C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}-\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ and $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$.

To finish, parametrize C_{1} by $x=\cos t, y=\sin t, z=0,0 \leq t<2 \pi$ and calculate:

$$
\begin{aligned}
\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r} & =\oint_{C}(2 x z+y) d x+(2 y z+3 x) d y+\left(x^{2}+y^{2}\right) d z \\
& =\int_{0}^{2 \pi} \sin t(-\sin t d t)+3 \cos t(\cos t d t) \\
& =\int_{0}^{2 \pi}-1+4 \cos ^{2} t d t \\
& =\left[-t+\frac{4}{2}(t+\sin t \cos t)\right]_{0}^{2 \pi}=2 \pi .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

