Vector Components

- **1**. a) Let $\mathbf{A} = \langle 1, 3 \rangle$ and $\mathbf{B} = \langle 3, 4 \rangle$.
- (i) Find the component of **A** in the direction of **B**.
- (ii) Find the component of **B** in the direction of **A**.

b) Let $\mathbf{A} = \langle 3, 5, 7 \rangle$ and $\mathbf{B} = \langle 3, 4, 0 \rangle$. Find the component \mathbf{A} in the direction of \mathbf{B} .

2. Let $\mathbf{A} = \langle a, 2 \rangle$ and $\mathbf{B} = \langle 1, 3 \rangle$. For what values of *a* is the component of **A** along **B** equal to 0? For what *a* is it negative?

3. For which angle θ is the component of **A** in the direction of **B** equal to 0.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.