Parametric curves

1. A disk of radius 2 cm slides at a speed $12 \sqrt{2} \mathrm{~cm} / \mathrm{sec}$ in the direction of $\langle 1,1\rangle$. As it slides it spins counterclockwise at 3 revolutions per second. Measuring time in seconds, at time $t=0$ the disk's center is at the origin $(0,0)$.

Find parametric equations for the trajectory of the point P on the edge of the disk, which is initially at $(2,0)$.
Answer: We will parametrize the curve by time t in seconds. To do this we split the motion into translation of the center and rotation about the center and use vectors to do the analysis.
See the figure below. At time t the center has moved to C and the edge point P has rotated $6 \pi t$ radians. ($3 \mathrm{rev} . / \mathrm{sec}=6 \pi$ radians $/ \mathrm{sec}$.) Thus

$$
\overrightarrow{\mathbf{O C}}=12 \sqrt{2} t\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\langle 12 t, 12 t\rangle
$$

and

$$
\overrightarrow{\mathbf{C P}}=\langle 2 \cos (6 \pi t), 2 \sin (6 \pi t)\rangle
$$

Putting these together we get

$$
\begin{array}{rc}
& \overrightarrow{\mathbf{O P}}=\overrightarrow{\mathbf{O C}}+\overrightarrow{\mathbf{C P}}=\langle 12 t+2 \cos (6 \pi t), 12 t+2 \sin (6 \pi t)\rangle \\
\Leftrightarrow & x=12 t+2 \cos (6 \pi t), \quad y=12 t+2 \sin (6 \pi t)
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

